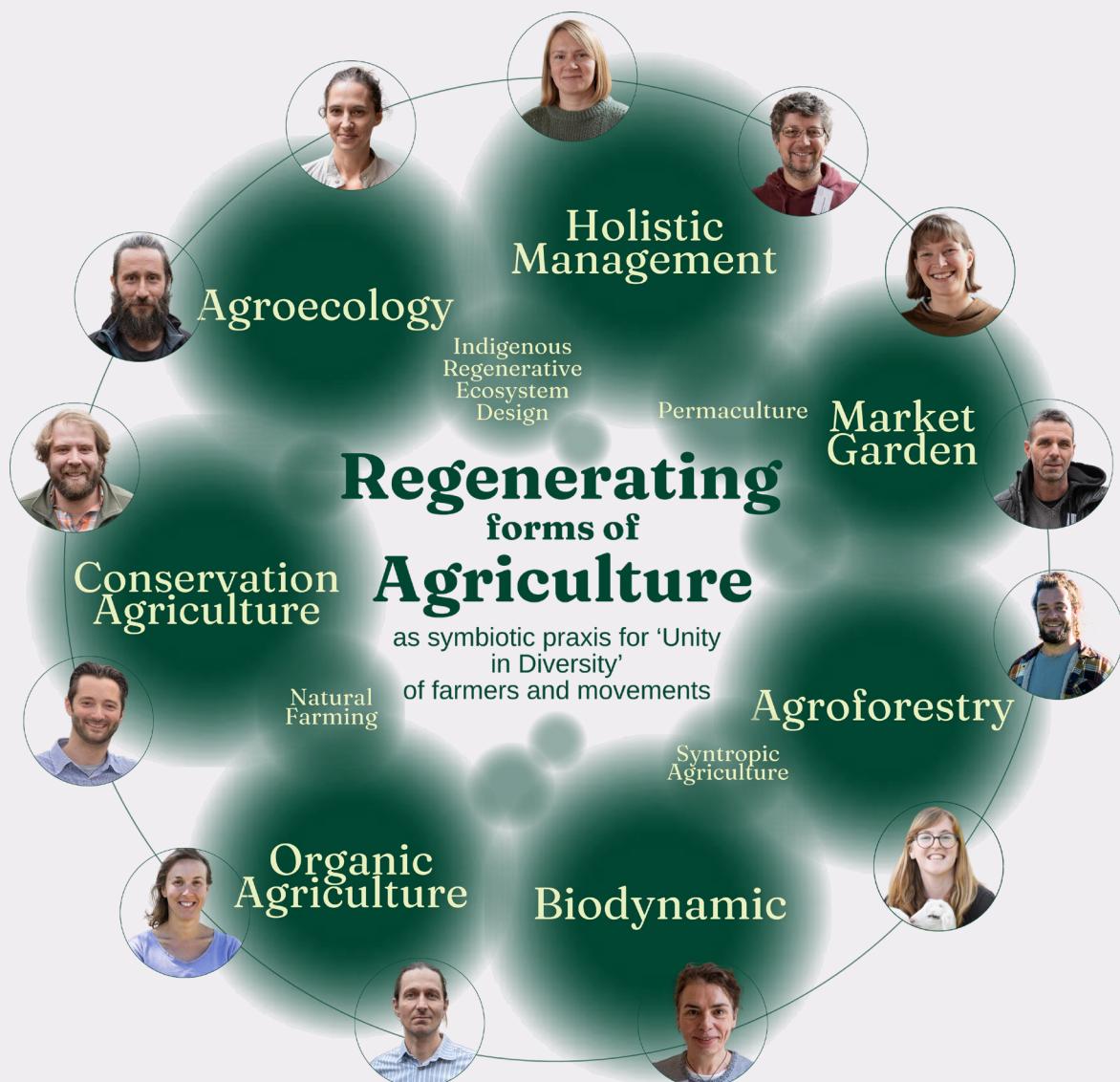


European Alliance for Regenerative Agriculture

RegenCompass

A Farmer-Led Guide to Frameworks, Certification & Claims
in Regenerative Agriculture


Version 1 | February 2026

About the European Alliance for Regenerative Agriculture

The European Alliance for Regenerative Agriculture (EARA) is the independent, farmer-led connecting mycelium, advocacy and collective action organisation of the movement of regenerative agriculture in Europe. EARA is striving to enable the transformation of our agrifood ecosystems through accountable ecologic, economic and social regeneration.

More information can be found on our website:
www.eara.farm

Terms of Use and Disclaimer

This RegenCompass is a first version and is to be understood as a compass setting a direction for the regenerative movement. It is intended as a service to the movement, not as a judgment. This first version hopes to provide a meaningful overview and a pedagogically valuable assessment lens. The detail of each Monitoring, Reporting, and Verification system (MRV) lies at a level of analysis that, at this stage, we were not able to perform. For example, the real cost of MRV per hectare or the full scientific rigor of specific methodologies is not fully assessed. We hence state clearly that this compass can guide stakeholder navigation of the space, but it cannot substitute each farmer's or organisation's self-assessment of which MRV system may be most fitting for their unique context and needs.

Crucially, a lower score in our assessment should not be interpreted as a judgment that an organization is doing "bad work". Most are undertaking excellent and vital work. A score primarily indicates the distance of an MRV's design, as presented in our criteria, from a theoretical benchmark that could, with full legitimacy, validate a farm's journey across all pillars of regeneration. This is a measure of system design ambition and communicational integrity, not of organizational intent or value.

All possible mistakes in this report are our own. We have put tremendous effort into accessing the full available information on the schemes assessed. However, we cannot guarantee that the information is complete or up-to-date at the time of publishing. We informed every organization about our assessment and provided a window to supply additional information. We transparently share the level of engagement we had with each. For our team, producing the RegenCompass has itself been a regenerative journey, a process of deep learning about RegenAg MRVs. We see this report not as a final verdict, but as a living invitation and a starting point for broader collective sense-making.

We are publishing now not because we believe our analysis is complete, but precisely because we know it is not. We publish to learn from your criticism, to

engage the whole regenerative movement, and to evolve this work together.

Our aim is not merely to counter feedback, but to take it to heart and treat it as the primary resource for the next phase of development. We acknowledge this requires a practice of gratitude and interdependence, recognizing that the path to a robust, holistic framework is built on collective intelligence. We are confident that the learning and the regeneration will deepen exponentially with your engagement. Let's use this compass to navigate the next part of the journey, together.

About this Report

The work underpinning this report was commissioned and stewarded by the Farmer Members of the European Alliance for Regenerative Agriculture. It aims to bring the voices of regeneration practitioners and pioneers into the heart of the private and public discourses and actions on the transformation of agrifood systems. The work was executed by EARA's Operations Team (Virginia Tarditi, Will Anderson, Simon Kraemer, Meghan Sapp and Josefine Herz) together with EARA's pioneering farmers.

Acknowledgements

We are deeply grateful to the evolving, adaptive and resilient global movement of regenerating farmers, who are stewards of our lands. Their commitment to regenerating ecosystems and supporting rural communities form the essential foundations for the health of our planet and all its inhabitants. We want to give particular thanks to Virginia Tarditi and Will Anderson for leading this work as well as all organisations that were responsive to our efforts to engage and thus made this work more productive and meaningful. We would like to thank our enabling funders who allowed us to create this report without having to seek additional outside support.

Copyright 2026 © European Alliance for Regenerative Agriculture. This work is licensed under a Creative Commons Attribution–Non-Commercial International Licence. Suggestion for Referencing: European Alliance for Regenerative Agriculture. RegenCompass. V 1 2026.

Picture Credits: EARA / hier.media

Executive Summary

This RegenCompass, Version 1.0, represents a foundational, farmer-led effort to map and evaluate the complex landscape of frameworks, certifications, and claims related to regenerative agriculture globally. Commissioned and co-produced by the Farmer Members of the European Alliance for Regenerative Agriculture (EARA), this report serves as a strategic compass, not a definitive GPS, to guide stakeholders through the rapidly evolving field of Monitoring, Reporting, and Verification (MRV) systems related to Regenerative Agriculture.

Our analysis of 29 contemporary MRVs reveals a sector at a critical juncture. These systems are the avant-garde of farm-level impact assessments generally. However, the assessment finds that many still struggle to meaningfully integrate all three pillars of regeneration—ecological, social and economic—with equal vigor. Achieving true context-specificity, cost-effectiveness, and tangible agronomic enabling value for farmers likewise remains a paramount challenge.

Importantly, true regenerative MRVs fundamentally reject the static, binary logic of conventional certification (certified/not). Its core purpose is not to ask „Are you regenerative?“ but „Are you moving towards more holistic regeneration?“ In fact, under full etymological rigour, the first question can only mean the second. This shift from judging a fixed state to tracking a dynamic process, through progressive levels or measured year-over-year outcome improvements, is what defines the field. It enables entry at any stage, values continuous improvement over static perfection, and transforms the framework from a top-down audit into a long-term learning partner for farming with nature.

In this initial benchmark, we assessed the enabling capacity for this journey—such as flexibility and farmer support—rather than having a predefined understanding on how the journey itself ought to be designed. Looking ahead, this distinction will move from an implicit theme to an explicit, core criterion in the next version.

This benchmarking provides an independent, non-proprietary comparison matrix that does more than identify leaders; it highlights frontiers for improvement in the spirit of true regeneration, offering a shared reference point for the entire ecosystem.

The analysis resurfaced a pressing systemic need: independent, farmer-led harmonization. To prevent greenwashing, greenhushing, and co-option, we advocate for a global consensus on a holistic-minimum MRV protocol that would ensure credibility of claimed regeneration journeys on farms. This envisioned foundation would ensure scientific legitimacy and uproot greenwashing while allowing for local diversity and innovation, ultimately creating a co-owned data backbone for affordable, verified regeneration. Throughout the next months EARA is engaging in work on that matter with partners from around the world.

As a living document, this assessment is a first step in that collaborative journey. Future iterations may evolve to provide more granular data, such as real costs per hectare, and will enhance methodological consistency through standardized checklists and clearer clustering of MRVs by purpose.

By aligning around this common compass, we can transform a fragmented landscape into a symphony of scalable, authentic regeneration, led by those at its heart: the regenerating farmers.

Overview Table

	Context-Specificity	Systemic Integration	Cost Effectiveness and Purpose-Fit	Agronomic Enabling Value
Agreena Carbon Program by Agreena	Low	Medium	Medium	Low
AgriBoussol by Earthworm Foundation	Medium	High	Medium	Medium
Carbon by Indigo Ag	Medium	Medium	Medium	Low
Certified Regenerative by A Greener World	Medium	High	Medium	Medium
Climate Beneficial™ Verified by Fibershed	Medium	Medium	Medium	Medium
Climate Farmers MRV by Climate Farmers	Medium	High	Medium	Medium
Farm Management Platform by Klim	Low	Medium	Medium	Low
Integrity Grown by Advancing Eco Agriculture	Medium	High	Medium	Medium
Lens by 3Keel	Medium	Medium	Medium	Medium
Regen Ag Transition Program / Beyond Carbon Framework by Soil Capital	Medium	Medium	Medium	Low
Regenerate Forum Certification by Regenerate Forum	Medium	High	Medium	Medium
Regenerate Outcomes Program by Regenerate Outcomes	Low	Medium	Medium	Medium
Regenerating Together Program by SAI Platform	Medium	High	Medium	Medium
Regeneration Index by Pour une Agriculture du Vivant	Medium	Medium	Medium	Medium
Regeneration International Standard by Regeneration International	Medium	Medium	Medium	Low
Regenerative Agriculture Certification by Cultivaé	Medium	Medium	Medium	Medium
Regenerative Agriculture Framework by McCain	Low	Medium	Medium	Medium
Regenerative Agriculture Framework by Nestlé	Low	High	Medium	Medium
Regenerative Agriculture Scorecard by Danone	Low	Medium	Medium	Medium
Regenerative Agriculture Standard by Rainforest Alliance	High	High	High	Medium
Regenerative Farming Standard by FoodChain ID	Low	High	High	Medium
Regenerative Organic Certified by Regenerative Organic Alliance	Medium	Medium	High	Medium
Regeneratively Verified™ / Regeneratively Grown™ by Soil Regen	Medium	High	Medium	Medium
Regenified 6-3-4 Verification Standard by Regenified	Medium	Medium	Medium	Medium
Standard Criteria Program by Regenagri (Control Union)	Medium	Medium	Medium	Medium
Unilever Regenerative Agriculture Program by Unilever	High	High	Medium	Medium
Approved Regenerating by AgriPurpose	Medium	Medium	Medium	Medium
Ecological Outcome Verification / Land to Market by Savory Institute	Medium	High	Medium	Medium
Regen Foods by Regen Academy	High	Medium	Medium	Low

Table of Contents

Introduction

Part I: The Roots and Drivers of Regenerative Agriculture MRVs	10
A Movement Born from Necessity: Improving Land and Livelihoods	10
The Double Threat: Greenwashing and Greenhushing	10
Learning from History: The Inevitability of Co-option and the Path of Resilience	10
The Contemporary Crucible: The Proliferation of MRVs and the Need for Harmony	11
EARA's Scientific Foundation: Defining Journeys, Not a State	12
The Regenerating Essence	12
The Purpose of This RegenCompass	13
The Scope of the Compass	13
Users of the Compass	14
Part II: Living Benchmarking Methodology	15
A Structured Benchmarking Approach	17
The Benchmarking Process: Rigor and Transparency	17
A Living Methodology for a Living Movement	18
From Principles to Criteria: A Farmer-Led Compass	18
Criterion 1: Context-Specificity	19
Criterion 2: Systemic Integration	19
Criterion 3: Cost-Effectiveness & Purpose-Fit	19
Criterion 4: Agronomic Enabling Value	19
Part III: Living Benchmarking	20
Agreena Carbon Program by Agreena	21
AgriBoussol by Earthworm Foundation	23
Carbon by Indigo Ag	25
Certified Regenerative by A Greener World	27
Climate Beneficial™ Verified by Fibershed	29
Climate Farmers MRV by Climate Farmers	31
Farm Management Platform by Klim	33
Integrity Grown by Advancing Eco Agriculture	35
Lens by 3Keel	37
Regen Ag Transition Program / Beyond Carbon Framework by Soil Capital	39
Regenerate Forum Certification by Regenerate Forum	41
Regenerate Outcomes Program by Regenerate Outcomes	43
Regenerating Together Program by SAI Platform	45
Regeneration Index by Pour une Agriculture du Vivant	47
Regeneration International Standard by Regeneration International	49
Regenerative Agriculture Certification by Cultivae	51
Regenerative Agriculture Framework by McCain	53
Regenerative Agriculture Framework by Nestlé	55
Regenerative Agriculture Scorecard by Danone	57
Regenerative Agriculture Standard by Rainforest Alliance	59
Regenerative Farming Standard by FoodChain ID	61
Regenerative Organic Certified by Regenerative Organic Alliance	63
Regeneratively Verified™ / Regeneratively Grown™ by Soil Regen	65
Regenified 6-3-4 Verification Standard by Regenified	67
Standard Criteria Program by Regenagri (Control Union)	69
Unilever Regenerative Agriculture Program by Unilever	71
Approved Regenerating by AgriPurpose	74
Ecological Outcome Verification (EOV) / Land to Market by Savory Institute	76
Regen Foods by Regen Academy	78
Conclusion and Outlook	80
Glossary	83

Introduction

Regenerative agriculture has emerged as a growing movement to improve land and livelihoods. Yet as its popularity rises, so too does the risk of **Greenwashing**, where language is co-opted for marketing, and **Greenhushing**, where detrimental actions are not called-out to avoid accountability. This creates confusion, dilutes impact, and undermines trust in the work done by those farmers and food systems actors truly working to create regenerative agrifood ecosystems.

History offers clear lessons: movements, from early organics to broader social transformations, have repeatedly faced fragmentation and appropriation when definitions and validation systems lack clarity, simplicity, and farmer ownership. Today, a surge in Measuring, Monitoring, Reporting, and Verification (MMRV)¹ systems, certifications, and claims threaten to repeat this pattern, burdening farmers with complexity rather than empowering them.

Against this backdrop, the need for **harmonization, comparability, and simplicity** in how we define and validate regeneration has become urgent.

EARA's Approach

In 2023, EARA's founding farmer members, pioneering practitioners from across Europe, collectively defined regenerative agriculture through a set of four holistic, actionable principles. These principles prioritize ecological, social, and economic regeneration as a continuous journey, not a fixed state. They guide EARA's engagement with policymakers, industry, and financial institutions, and form the foundation of this assessment.

This RegenCompass represents the next step: evaluating 29 MRV systems against farmer-defined integrity criteria, to bring clarity, encourage alignment, and help steer the movement toward systems that truly serve land and livelihoods.

With this RegenCompass, EARA attempts a pre-competitive assessment of MRVs related to

¹ Hereafter MRVs are used as a catch-all acronym to express a wide diversity of frameworks, certifications, claims, protocols and other tools used in Supply Chain Validations, Product Certifications, Carbon and Financial Market claims related to Regenerative Agriculture.

Regenerative Agriculture. While not all assessments are rated positive, EARA wants to state clearly that within their contexts, we are grateful for all the steps taken so far. Our rating should not be a calling out, but, in the spirit of regeneration, a support structure for continuous improvement.

The assessment evaluates each MRV against four farmer-defined criteria, reflecting real-world use and regenerative potential. It is intended as a dynamic, evolving tool to inform the development of a more unified validation infrastructure and prevent market fragmentation, supporting the transition of regenerative agriculture into the mainstream.

In different forms, different actors have attempted similar benchmarking overviews. While fully appreciating these efforts², EARA believes added value can come from an overview that stems from the perspective of pioneering farmers and captures a much wider diversity of MRVs than ever before.

Part I of the assessment discusses the theoretical and historical context of the developments around RegenAg MRVs. Part II presents and discusses the assessment's four criteria and assessment thresholds. Part III shares the concise assessments of 29 RegenAg MRVs in alphabetical order. The report closes with a summary overview and contemplates possible paths ahead.

² Some examples are the AsYouSow NGO's [report](#) analyzing in depth the RegenAg MRVs of 20 companies. FAIRR investor network published its [Four Labours of Regenerative Agriculture report](#). BSI [research](#) finds that the international agri-food industry does not have access to the clear guidance needed to stimulate widespread, trustworthy and verifiable regenerative agriculture practice.

Part I: The Roots and Drivers of Regenerative Agriculture MRVs

Part I: The Roots and Drivers of Regenerative Agriculture MRVs

A Movement Born from Necessity: Improving Land and Livelihoods

Regenerating forms of agriculture³ did not emerge in a boardroom or a policy paper. They grew, organically and resiliently, from the land itself, cultivated by the hands and wisdom of those working most innovatively with it. Its origins lie with Indigenous peoples, peasants, and pioneering farmers worldwide who, for generations, have practiced land stewardship in syntropy with nature's cycles. In the modern context, this lineage extends through movements like the Rodale Institute's foundational work on regenerative organic, the Savory Institute's global work on the use of livestock as ecosystem management tools or the more recent farmer-led approaches such as Regenified as spearheads of an accelerating wave of outcome-oriented ecological farming approaches over the past few decades.

At its core, RegenAg is a response to a universal and non-negotiable obligation: the duty of every actor in the agrifood system, from the smallest grower to the largest multinational, from municipal councils to nation-states, to actively improve the socio-ecological impacts of production and land use, season by season, year by year. It is a commitment to a trajectory of continuous, measurable betterment for all life. This is not merely an environmental imperative but a fundamental matter of public trust and long-term viability.

The Double Threat: Greenwashing and Greenhushing

As the term "regenerative agriculture" gains powerful market and policy traction, it has become a new frontier for long-standing corporate and political strategies of appropriation. Greenwashing, the co-opting of holistic language to create a misleading facade of sustainability or regeneration, proliferates,

sows scepticism, fosters division within the movement, and dilutes the transformative potential of genuine regeneration. When "regenerative" is slapped onto business-as-usual inputs or simplified to a single practice like no-till, it severs the term from its roots in systemic health and interconnectedness.

Perhaps an even greater, though less visible, danger is greenhushing: the conscious failure to improve performance or to communicate transparently about impacts and intentions. Where greenwashing is an act of commission (misleading communication), greenhushing is one of omission, silence and inaction that allows degradative practices to continue unchallenged. Both phenomena stem from the same root: a resistance to genuine accountability and a preference for optics over outcomes.

Learning from History: The Inevitability of Co-option and the Path of Resilience

The attempt to align powerful economic interests with progressive human and ecological values is a historical constant, not a modern anomaly. Currently, one of countless examples of Greenwashing in the public sector is the insistence of the European Commission that 26% of the subsidies distributed through the Common Agricultural Policy from 2014-2020 had a positive climate mitigation impact⁴. This is scientifically disproven by the European Court of Auditors⁵ among others. Nevertheless, the Commission keeps on claiming/greenwashing. Now they state⁶, in the period 2021-2027, without any significant change, that 40% of the budget will serve climate mitigation. In the private sector, a most poignant example is the CEO⁷ of JBS having the audacity to talk of his company fostering regenerative agriculture, while leading arguably the most corrupt and destructive 'food' company⁸ of the last decades.

One of countless examples of co-option is the journey of the term 'regenerative agriculture' itself. Born from indigenous wisdom and farmer-led movements seeking to regenerate One Health, it has been swiftly adopted by multinational agribusinesses. Companies like Bayer now promote 'regenerative agriculture' while

⁴ European Commission. 2017. Common monitoring and evaluation framework. ([LINK](#))

⁵ European Court of Auditors. 2021. Common Agricultural Policy and climate: Half of EU climate spending but farm emissions are not decreasing. ([LINK](#))

⁶ <http://eur-lex.europa.eu/eli/reg/2021/2115/oj>

⁷ <https://sustainablefoodbusiness.com/regenerative-agriculture-jbs-global/>

⁸ <https://www.greenpeace.org/international/story/74450/jbs-big-villain-origin-story/>

³ EARA uses Regenerating Agricultures as short form for Regenerating Forms of Agriculture which we understand as the more fitting expression of what Regenerative Agriculture as a farmer movement, rooted in diversity and plurality, as opposed to a corporate or state hegemony really stands for: a mycelium of approaches of regenerating forms of living with lands and communities.

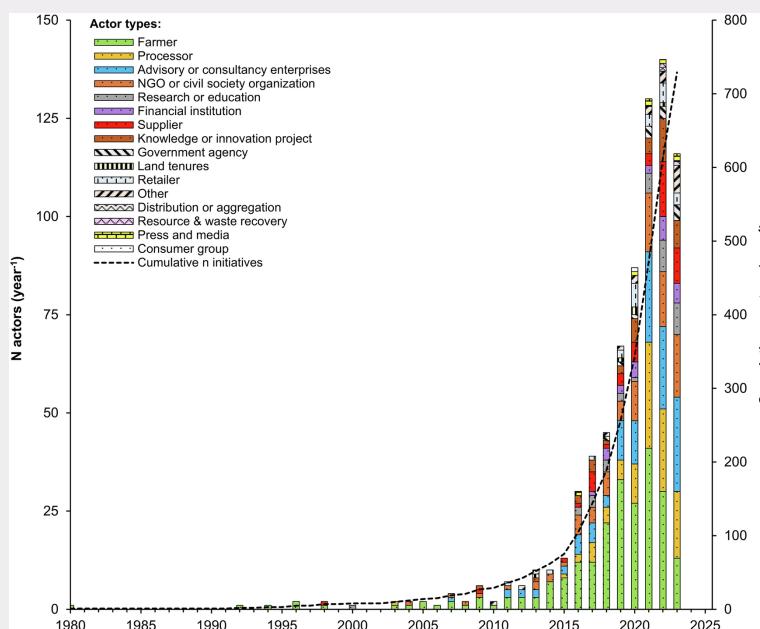
continuing to aggressively sell the very pesticides and manipulated seed systems that the original movement resists. By co-option Bayer thus attempts to hollow out the transformative meaning and neutralise its market threat.

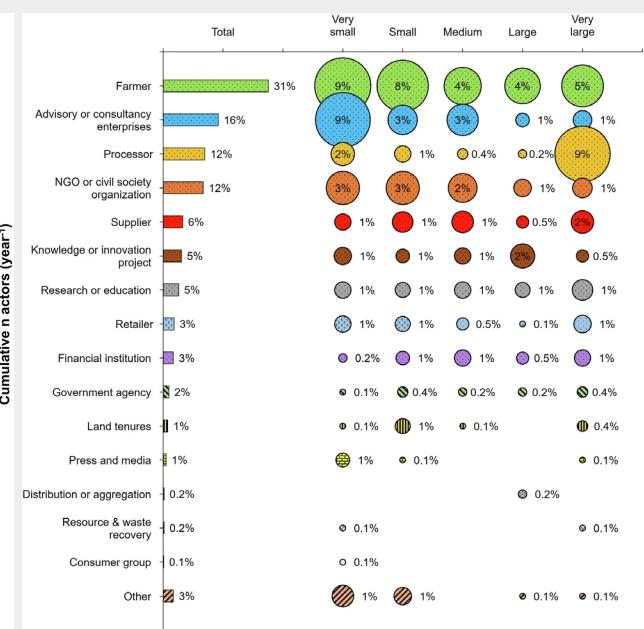
The patterns of Greenwashing, Greenhushing and co-option echoes at different levels in the agricultural sphere: the organic movement, born from heroic grassroots resistance to the Green Revolution's chemical onslaught and the corporate capture of our food system, has likewise wrestled with dilution, bureaucracy, and industry capture as it scaled.

They teach us that: co-option and Greenwashing are inevitable for any movement that gains scale and threatens the status quo.

- Co-option and Greenwashing are inevitable for any movement that gains scale and threatens the status quo.
- Top-down, prescriptive certification models often fail to serve the farmers they purport to help, adding cost and complexity without corresponding empowerment or ongoing improvement.

Commitment to regenerative agriculture over time




Figure 1: Narrative analysis of the development of regenerative agriculture as a term⁹

- Generic, one-size-fits-all approaches degrade the local adaptation, innovation, and biocultural diversity that are the hallmarks of true resilience and regeneration.
- The survival and integrity of a movement depend on clarity that rejects reductionism and guardrails that protect core principles from dilution.

The Contemporary Crucible: The Proliferation of MRVs and the Need for Harmony

Today, these historical dynamics are playing out in the explosive proliferation of RegenAg MRV methodologies. Certifications, frameworks, carbon protocols, and supply chain claims are sprouting even faster than perfectly coated and sown cover crop seeds. Each brings its own definitions, metrics, data demands, and audit processes. For the pioneering farmer at the heart of the transition, this creates an alphabet soup of acronyms, a confusing, costly, and fragmented landscape that can stifle innovation, obscure transparency, and lock data into proprietary silos.

Distribution of regenerative actors by type and size

This fragmentation represents a critical juncture, mirroring the early days of organics. The urgent need is no longer for more standards, but for harmonization, comparability, and foundational simplicity. There is a profound need for a coherent, farmer-centric overview that cuts through the noise, assessing which MRV systems truly serve regeneration's holistic goals or which merely repackage old paradigms. We need actionable definitions, not just philosophical statements, that translate into practical tools empowering farmers to farm in symbiosis with nature.

EARA's Scientific Foundation: Defining Journeys, Not a State

Navigating this complexity requires a clear philosophical compass. EARA approaches this challenge from a specific epistemological stance: we acknowledge that all measurement is reductionist. Quantification can only ever give a rough sketch of the immeasurable complexity and emergent properties of a living farm ecosystem.

As EARA Founding Farmer Tilen Praprotnik notes,

“Any quantification is inherently reductionist and works poorly when we want to observe systems that are immeasurably complex and are to be viewed holistically. Quantification is fine as an aid to getting a rough idea. As long as we are aware that we are not getting the whole picture.”

Therefore, the goal can not be to define and measure a static "regenerative" state. Instead, EARA's work is built on defining and supporting continuous journeys of improvement. This aligns with Indigenous and agroecological wisdom: we establish guiding principles for action, not rigid prescriptions for practice.

In 2023, through a consensus process involving more than 50 pioneering farmers from across Europe, EARA ratified four symbiotic defining principles for regenerative agriculture. These principles, focused on enhancing ecosystem health, socio-economic fairness,

adaptive stewardship, and systemic resilience, are designed to be robust enough to ensure integrity yet open enough to foster context-specific innovation and diversity.

The Regenerating Essence

In EARA, we acknowledge that every farmer has their own approach to farming. Within EARA we aim for unity in diversity amongst all regenerating approaches to farming to farming because we know that united diversity produces better outcomes - in the cover crop just as in all farmer and people's movements.

As can not be emphasized enough, we also know that regeneration is a journey. Regenerative thus describes a mindset, a development, a process, a journey, not a state.

That's why EARA supports no dogmas and no fixed states. We acknowledge context-specific processes that produce regenerative outcomes.

We consider farming approaches regenerative only if they include the (1) context-specific and (2) continuous (3) reduction of chemical and physical disturbance as well as the (4) increase of biological, socio-economic and ecosystemic resilience, productivity and health.

EARA is open to all kinds of farmers as long as there are regenerating outcomes according to 1, 2, 3, and 4.

For example, what that means is exemplified in the following questions:

Can I be regenerative while I do conservation agriculture with herbicides?

Yes - as long as there are outcomes that prove you are on a regenerating journey and you intend to continuously reduce herbicide and pesticide use.

Can I be organic and regenerative while tilling?

Yes - as long as there are outcomes that prove you are on a regenerating journey and you intend to continuously reduce tillage.

Can I be regenerative while raising livestock partly inside and with supplementation?

Yes - as long as you raise the animals increasingly on pasture, graze more adaptively in tune with ecosystem function, and increase the pasture proportion of their diet.

In 2025, EARA supported the European Economic and Social Committee (EESC)¹⁰ in their opinion on Regenerative Agriculture. The EESC is the unified voice of workers, employers, farmer associations and civil society in EU policy-making, among them Arnold Puech d'Alissac, acting president of the World Farmers Organisation. The opinion expresses the same principles of regeneration as a context-specific journey of continuous improvement while adding specific KPIs for a MRV system.

The Purpose of This RegenCompass

This document is the operationalisation of that farmer-defined philosophy. It is born from the need to bring clarity to the fragmented MRV landscape, to assess tools not by their marketing but by their real-world "use-value" to a regenerating farm. It is a **living** assessment because the landscape evolves, new data emerges, and our collective understanding deepens. It is a **benchmarking** exercise because it establishes clear, principled criteria against which diverse systems can be comparably evaluated.

Part I has laid the groundwork: regenerative agriculture is an essential, historical movement facing predictable threats of dilution and complexity at its moment of mainstream arrival. The following sections detail the criteria born from farmer experience (Part II), apply them to 29 MRV systems (Part III), and chart pathways forward toward the harmonization and integrity the movement requires to fulfill its promise for land and livelihoods.

The RegenCompass is published as part of a broader movement toward a global consensus on a holistic-minimum MRV, a regenerative baseline, globally embraced that protects against Greenwashing, Greenhushing and co-option inoculates trusts and context-specific liberatory praxes of farmer-led regeneration.

The assessment evaluates each MRV against four farmer-defined integrity criteria, reflecting real-world use and regenerative potential. It is intended as a dynamic, evolving tool to inform the development of unified validation infrastructure and prevent market fragmentation, supporting the transition of regenerative agriculture into the mainstream.

The Scope of the Compass

This assessment focuses on MRV systems that explicitly and intentionally address regenerative agriculture at field, farm or supply-chain level. The scope includes three categories of systems:

- Carbon and financial market MRV systems that quantify and verify outcomes related to greenhouse gas emissions, soil carbon, or climate performance within regenerative agriculture contexts.
- Outcome-based farm regeneration MRV systems that monitor changes in ecological, social and economic conditions at farm or landscape level over time.
- Product and supply-chain certification systems with MRV components that incorporate regenerative agriculture principles and include monitoring, verification, or reporting mechanisms.

Users of the Compass

The RegenCompass in this first version is intended for

- Everyone trying to understand better sustainability benchmarking in agriculture, whose most innovative forms arguably are regenerative agriculture assessment MRVs.
- Everyone trying to understand how we can advance to fight Greenwashing, Greenhushing and co-option with the regenerative agriculture narrative as well as how to fight greenhushing and greenwashing in the agrifood system generally.
- Everyone trying to understand better what 'result-based' looks like in its most advanced operationalisations.

We believe it serves as a good overview for farmers, brands and other stakeholders looking into MRV solutions to provide guidance, lessons learned and opportunities for continued improvement in line with true regeneration.

¹⁰ EESC. (2025). Regenerative agriculture as a target towards enhancing sustainable food production, supporting climate and biodiversity objectives. ([LINK](#))

Part II: Living Benchmarking Methodology

A photograph showing a group of approximately 20-30 people gathered in a field. They are dressed in outdoor, casual, and somewhat warm clothing like jackets and hats. Several backpacks are visible, suggesting a day trip or fieldwork. The background is filled with trees with autumn-colored leaves, and the lighting suggests it's either early morning or late afternoon. The overall atmosphere is one of a community or professional gathering focused on a specific topic.

Part II: Living Benchmarking Methodology

“Trusting and enabling the farmers to improve and learn over time is what gives regenerating agriculture its strength, while integrity is secured through measurement and validation of those regenerating outcomes.”

Meghan Sapp
EARA Farmer and Advocacy & External Relations Director

Any attempt to evaluate frameworks for regenerative agriculture begins with a fundamental paradox: how can we measure something as complex, dynamic, and emergent as a living farm ecosystem? As Oscar Wilde observed, “All definitions are restrictions.” This tension lies at the heart of all the MRVs this living benchmarking exercise assesses.

The core difference in the reductionism of the act of defining lies in what we aim to define: A continuous journey of improvement (= regeneration) or a boundary, a threshold, that according to someone, sustains an ability to do something (= sustainability)¹².

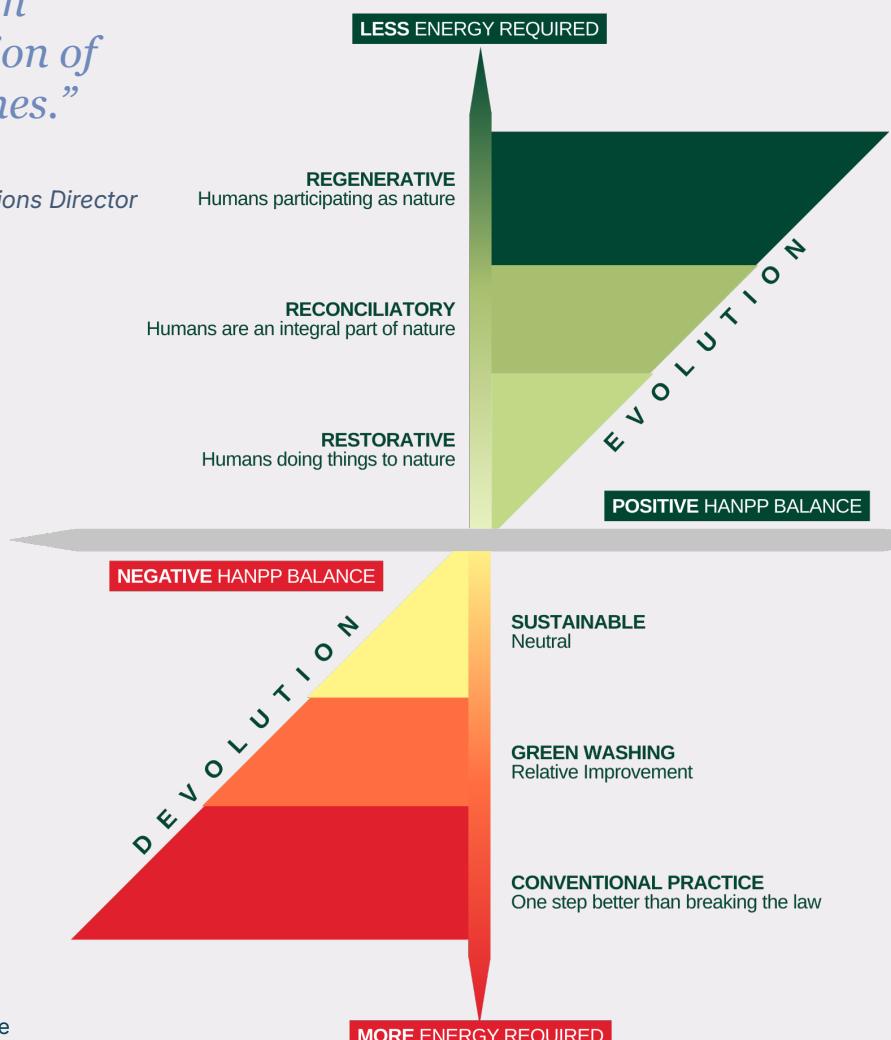


Figure 2: Regenerative in comparison to Sustainable (HANPP = Human Appropriated Net Primary Productivity)¹¹

¹¹ Adapted from Belgian Federal Public Service for Health, Food Chain Safety and Environment. Regenerative Development and Design ([LINK](#))

¹² The property of being environmentally sustainable; the degree to which a process or enterprise is able to be maintained or continued while avoiding the long-term depletion of natural resources. ([LINK](#))

For defining a continuous journey of regeneration, we define principles to guide our developing actions and check their outcomes against them.

In that way we stop attempting to define the practices to sustain our predefined abilities. We stay aware that what we define to measure can never show the immeasurably complex, holistic and expansive potential of living systems.

Quantification, as reflected upon previously by Tilen Praprotnik, works poorly when we seek to holistically observe systems of immeasurable complexity. Quantification provides a rough sketch, an aid to orientation, but it can never capture the full picture of biological, social, and economic becoming. As said by leading regenerative agriculture pioneer John Kempf, in biological systems, one plus one does not equal two, but instead 11 because we can not measure all of the impacts a single practice or a conjunction of practices can have on a system.

Recent revolutions in natural science¹³, connecting soil microbiomes to biospheric health, and the accumulated wisdom of Indigenous and peasant stewardship, teach us that life operates through principles, not rigid prescriptions. They further teach us that when humans declare that here lies the border, the threshold beyond which you are in and below which you are out, they establish prescriptions which do not take into consideration the outcomes. Regenerating agricultures seek to manage the ecosystem for outcomes, be it soil health such as water and mineral cycling or increased productivity with less or no external inputs beyond what the ecosystem provides. But prescriptive practices limit the understanding of ecological function, context-specificity and basing results on objectively measured outcomes rather than coefficients.

Hence the methodology is designed to assess tools that support a **continuous journey of improvement**, the very essence of regeneration. The resilience and innovative power of regenerative agriculture lie precisely in what its definition leaves open to emerge. Our task is to evaluate whether Monitoring, Reporting, and Verification (MRV) systems enable this emergent potential while providing enough integrity to guard

against Greenwashing and negative second order effects or other setbacks.

A Structured Benchmarking Approach

This RegenCompass is, at its core, a structured, criteria-based comparative analysis, the standard practice of benchmarking. Benchmarking is the process of comparing processes and performance metrics against others or a standard to identify best practices and opportunities for improvement. Our methodology is built on this foundation:

- **Structured Criteria:** We evaluate each framework against four specific, farmer-defined criteria, the key dimensions for a meaningful comparison.
- **Calibrated Scoring:** Our three-level scoring system ("Green," "Orange," "Red"), with two clear thresholds for each level, provides an objective, repeatable measurement scale. This moves the exercise from subjective opinion to transparent analysis.
- **Identification of Leaders & Gaps:** The results show which frameworks perform well on which criteria, revealing "best-in-class" leaders, specialised tools, and critical market-wide gaps that represent opportunities for innovation.
- **Comparison:** We analyse 29 different MRV frameworks against each other.

This approach ensures objectivity and consistency by forcing explicit definitions of performance levels, reducing scorer bias. It offers clarity and communication by translating complex qualitative assessments into an easily digestible visual matrix. Most importantly, it yields actionable outcomes, not just a ranking, but a diagnostic map showing where each MRV excels or falters, illuminating pathways for the entire sector's evolution.

The Benchmarking Process: Rigour and Transparency

This assessment is the result of a **structured, comparative analysis**, the core of rigorous benchmarking. For each of the 29 MRV systems, EARA's team, guided by farmer knowledge, conducted an impartial evaluation based on:

- Analysis of primary documentation and publicly available materials.
- Direct surveys and interviews with scheme representatives.
- Reflection against the explicit thresholds for each criterion.

¹³ Cavicchioli et al. 2019. Scientists' warning to humanity: microorganisms and climate change. ([LINK](#)), Banerjee and Hejden. 2022. Soil microbiomes and One Health. ([LINK](#)).

Following that preliminary evaluation, a committee of EARA Farmer Members evaluated the results, gave feedback and provided validation or recalibration of scoring, ensuring the process is not only farmer led but also farmer validated.

This process transforms subjective opinion into a calibrated, objective analysis. The resulting 4x3 matrix for each MRV (4 criteria, 3 performance levels) serves as a powerful diagnostic tool. It allows us to identify:

- **The Integrated Leaders:** A framework scoring “Green” across multiple criteria.
- **The Specialists:** A system excelling in one area (e.g., Cost-Effectiveness) but lacking in others.
- **Critical Improvement Potentials:** Where entire categories of MRVs score “Orange” or “Red,” revealing systemic weaknesses and opportunities for collective innovation.

A Living Methodology for a Living Movement

This benchmarking is “living” because it is iterative. We invited every assessed organization to reflect upon the criteria and supply additional information. We remain open to dialogue and will update the assessments in future versions as systems evolve and new data emerges. Our goal is not to micromanage or condemn, but to clarify, build trust, and stimulate continuous improvement across the entire ecosystem of regenerative validation.

By applying this farmer-defined compass, we move beyond the jungle of acronyms and supplementary information toward a landscape of understanding, illuminating which tools truly serve the journey of regeneration, and which merely document the status quo.

From Principles to Criteria: A Farmer-Led Compass

In 2023, more than 50 pioneering farmers from across Europe, through a collaborative consensus process, developed and ratified EARA’s four defining principles for regenerative agriculture. These principles, existing in symbiosis without hierarchy, form the ethical and practical bedrock of our evaluation. They translate farmer wisdom into a lens for assessment.

Our four benchmarking criteria are the direct operationalisation of these principles for evaluating MRV systems. They ask not what a system claims, but how it functions in reality for the land steward and as such it is outcome-based rather than practice-

based. These criteria assess each MRV’s “use-value”, its practical ability to support a farm’s holistic regeneration.

Each criterion is evaluated against clear, explicit thresholds, resulting in a “traffic light” score (Green, Orange, Red) that indicates alignment with regenerative principles.

It needs to be stressed that this is a compass and not a ‘detailed’ GPS-Navigation system. While this first version of the benchmarking seeks to provide a meaningful overview and pedagogically valuable assessment lens, the detail of each MRV lies at a level of analysis that at this stage we were not able to perform. That means, for example, the real cost of the MRV per hectare or per farm, the scientific rigour of the soil sampling methodology deployed, etc. is not fully assessed. We hence want to clearly state that this compass can guide stakeholder navigation of the space, but it can not substitute each farmer’s or organisation’s self-assessment of which MRV system may be most fitting for their context and needs.

Criterion 1: Context-Specificity

Criterion 2: Systemic Integration

Criterion 3: Cost-Effectiveness & Purpose-Fit

Criterion 4: Agronomic Enabling Value

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>Core Question: Is the system designed to adapt over time and across different locations (e.g. changing seasons, soil types, climates, local socio-economic conditions)?</p> <p>Rationale: Regeneration is not a prescription; it is a contextually intelligent response. Like ecological succession, it unfolds in S-curves unique to each place and moment.</p> <p>Thresholds:</p> <ul style="list-style-type: none"> • Green: Program holistically adapts recommendations and metrics to specific contexts (soils, climate, farm structure) with verified regional calibration. • Orange: Local context is lightly considered, but calibration is not fully verified or systematically applied. • Red: A rigid, one-size-fits-all approach; global metrics applied uniformly without adaptation.
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>Core Question: Does the system capture regeneration as a multi-dimensional process, integrating ecological, social, and economic outcomes?</p> <p>Rationale: True regeneration can not come at the sustained cost of another part of the nested system. It requires avoiding trade-offs and fostering co-benefits among biodiversity, livelihoods, water cycles, and economic resilience.</p> <p>Thresholds:</p> <ul style="list-style-type: none"> • Green: Ecological, social, and economic outcomes are quantified and their interconnections are recognized. • Orange: Strong environmental metrics, but social and economic indicators are weak, absent, or treated as add-ons. • Red: Narrow, reductionist focus on a single issue (e.g., carbon only) without mandatory, integrated improvements in other domains.
COST-EFFECTIVENESS & PURPOSE-FIT	<p>Core Question: Is the MRV system efficient, accessible, and right-sized for its stated purpose, ensuring opportunity for broad participation?</p> <p>Rationale: The cost and complexity of validation must not become a barrier that strains farmers or eaters. Efficiency and accessibility are preconditions for equity and scale.</p> <p>Thresholds:</p> <ul style="list-style-type: none"> • Green: Affordable, scalable, low-bureaucracy, and designed to be fit-for-purpose, including for small-scale and diverse producers. • Orange: Manageable but imposes a significant reporting burden; scalability is poor; costs are high or unclear. • Red: Expensive, time-consuming, with high annual effort; presents a prohibitive burden, especially for smallholders.
AGRONOMIC ENABLING VALUE	<p>Core Question: Does the system actively help farmers make better on-farm decisions and provide useful feedback for innovation?</p> <p>Rationale: The primary value of farm data must flow back to the farmer. An MRV should be a tool for biological intensification and autonomy, not just a data-extraction pipeline.</p> <p>Thresholds:</p> <ul style="list-style-type: none"> • Green: Provides practical, context-rich feedback that directly supports farm management, innovation, and decision-making. • Orange: Offers only general or checklist-style guidance; technical feedback is not tailored to the farm's specific context. • Red: Prescriptive and rigid; operates as a pass/fail audit with no learning feedback or decision-support insights.

Part III: Living Benchmarking

PROGRAM

Agreena Carbon Program

MRV PROVIDER

Agreena

Agreena

OVERVIEW

AgreenaCarbon is a European soil-carbon program that pays farmers for adopting practices like reduced tillage, cover crops and fertiliser optimisation. Farmers enrol individual fields, enabling tailored participation across diverse regions. The program's MRV system is validated under Verra's VCS (VM0042), using farmer data, remote sensing, soil sampling and the RothC model to quantify carbon outcomes. Agreena covers MRV costs and shares credit revenue with farmers, supported by digital tools through AgreenaGro. While carbon accounting is the core focus, Agreena links its work to broader benefits such as soil health and biodiversity, with co-benefit indicators still in development.

INFORMATION ASSESSED

Agreena - Input for EARA

AgreenaCarbon Project VCS Validation Report (Earthood, VM0042)

Agreena website (program description, MRV explanation, AgreenaGro tools)

Verra VCS registry (project listing & documentation)

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological (quantified, core MRV focus)

- Climate / Carbon
- Soil carbon sequestration (modelled)
- GHG emissions reductions (Scope 1–3 agricultural emissions)
- Net carbon balance (tCO₂e issued as credits)
- Additionality, permanence, leakage (VCS requirements)
- Soil & land management (proxy-based, model inputs)
- Tillage intensity
- Cover crop use
- Crop rotation data
- Organic matter inputs

Economic (indirect and partial)

- Carbon revenue paid to farmers (€ / tCO₂e)
- Practice transition incentives
- No farm-level profitability, margin, or cost indicators measured

SCOPE

Field Scope

- Individual fields enrolled as "Project Activity Instances"
- Field-level data collection (cropping, tillage, cover crops) used for modelling
- No mandatory repeated soil sampling per field (model-first approach)

Farm Scope

- Arable farms of all sizes; hundreds of crop types

Spatial Scope

- Multi-country coverage across 20+ European countries

System Scope

- Field-level MRV → aggregated to farm → aggregated to project
- Outputs relevant for carbon markets, Scope 3 reporting, and regenerative transition narratives

PROGRAM
Agreena Carbon Program

MRV PROVIDER
Agreena

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>The program accounts for differences in soils, climate, crops and management through parameters embedded in the carbon modelling methodology, ensuring that estimated carbon outcomes vary across locations. However, beyond these model inputs, the evaluation framework applies a largely uniform structure across regions, including eligibility rules, permanence requirements and verification logic. There is no evidence of regionally calibrated regenerative indicators or place-based thresholds that reflect broader agronomic or socio-economic context. Adaptation therefore occurs primarily to support accurate carbon accounting rather than as a holistic, context-responsive regenerative framework.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>The program focuses on a single quantified outcome: greenhouse gas emission reductions and removals expressed as carbon credits. Other ecological dimensions such as biodiversity, water cycles or nutrient cycling are not measured as outcomes, but only indirectly addressed through eligible practices. Social outcomes are not measured, and economic outcomes are limited to carbon payments rather than indicators of farm viability, resilience or livelihoods. As a result, regeneration is not assessed as a multi-dimensional process, and improvements in non-carbon domains are neither required nor verified.</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>Agreena covers soil sampling, MRV processes and verification costs, meaning farmers face no direct measurement expenses. Revenue sharing ensures farmers retain most credit income and can enrol only part of their land, reducing financial and administrative risk. The digital platform simplifies data entry, benchmarking and monitoring, lowering bureaucracy and making participation accessible. The system scales across countries using remote sensing and field-level modelling, reducing per-farmer administrative load. Data collection requires annual reporting of management practices, but this aligns with normal farm record-keeping. No evidence suggests high annual burdens or prohibitive costs.</p> <p>Some potential challenges remain. For example, data entry may still be time-consuming for very small or diversified farms, and long-term MRV for carbon permanence introduces ongoing commitments.</p>	
AGRONOMIC ENABLING VALUE	<p>Agreena offers farmers digital tools (AgreenaGro) for sustainability scoring, benchmarking rotations and estimating profitability impacts. These features provide some actionable feedback and can support decision-making, especially around practice selection and expected carbon outcomes.</p> <p>However, the primary purpose of the MRV system is carbon quantification rather than agronomic optimisation. While practices like no-till and cover cropping naturally improve soil function, the system does not consistently deliver tailored, field-specific agronomic recommendations. Guidance is mostly checklist-based, and deeper biological-health indicators (soil biology, nutrient cycling, water dynamics) are not yet integrated into routine monitoring.</p>	

PROGRAM

AGIBOUESSOL

MRV PROVIDER

Earthworm Foundation

OVERVIEW

AgriBoussol is a multi-layered MRV tool designed to support and track farm transitions toward regenerative agriculture. It combines an impact framework for downstream companies, an agronomic performance framework for farmers, and a support framework for advisors. Together, these track soil health, biodiversity, climate impact, water, and farm autonomy using farm- and system-level indicators. Results inform farmer transition categories and may underpin incentive mechanisms. The tool is integrated into the Mes Sols Vivants digital platform and aligned with other reporting frameworks (e.g. SAI, WBCSD, Label Bas Carbone), aiming to serve multiple supply-chain actors through a shared measurement architecture.

INFORMATION ASSESSED

Agriboussol – Technical documentation (Jan 2025) (confidential)

Explanatory - Input for EARA

Public web information on Sols Vivants / Mes Sols Vivants and Earthworm's Living Soils program

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological

- Soil texture and physical characteristics
- Soil chemical parameters (e.g. nutrients, pH)
- Crop performance indicators
- Practice-related variables (fertilisation, rotations, soil cover, tillage)
- These data are used for diagnosis and advice, not as verified regenerative outcome indicators.

Agronomic performance framework (cropping-system & farm level)

- Duration of live soil cover (days per year, remote sensing).
- Carbon restored and humified (C return from residues, covers, organic amendments).
- Nitrogen autonomy (% N from local organic sources and N-fixing legumes).
- Global Nitrogen Balance (surplus/deficit at farm scale).
- Crop diversity index (number and share of species in rotation).
- "Welcoming biodiversity", combination of agro-ecological infrastructure share and plot size.
- Treatment Frequency Index (IFT), intensity of pesticide use compared with regional average

Support framework (decision-support)

- Humic balance (long-term soil organic matter trajectory).
- Soil tillage intensity rating (STIR).
- Irrigation water consumption.
- Spade-test indicators (structure, bioturbation) used in advice and in the Living Soils Score.

Economic

- Economic considerations (input efficiency, yield optimisation) are implicitly addressed through agronomic advice

SCOPE

Field Scope (micro-level)

Indicators are first calculated at cropping-system level, defined by local characteristics (dominant soil type, organic/conventional, rotation, irrigation, N level, organic inputs).

Farm Scope (whole farm level)

Environmental impact indicators and performance aggregations are calculated for the whole farm, enabling farm-level transition categorisation and incentives (Committed, Transition, Advanced, Expert)

Spatial Scope (geographic level)

Developed and validated in France (Living Soils projects, arable and mixed farms in northern regions) with compatibility to schemes such as Label Bas Carbone, SAI Platform and WBCSD regenerative indicators, allowing use across value chains sourcing from multiple regions.

PROGRAM
AGIBOUESSOL

MRV PROVIDER
Earthworm Foundation

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>Agriboussol is explicitly designed to account for time and place in its measurement architecture. All indicators are calculated on two distinct scales: the cropping system (group of plots with identical technical itinerary) and the whole farm. Cropping systems are defined using locally relevant criteria such as organic vs conventional management, dominant soil type, "typical rotation", presence of irrigation, frequency of organic inputs and level of nitrogen fertilisation. This allows the tool to distinguish between different management zones within a farm that may face different soil and climate constraints, while still rolling results up to a farm-level view. Agronomic performance indicators (e.g. soil cover duration, nitrogen balance, biodiversity-related metrics) are first computed at cropping-system level, supporting tailored interpretations and advice for each system. Environmental impact indicators (Living Soils Score, carbon storage, GHG emissions, biodiversity score) are then computed across all cropping systems to reflect whole-farm performance. Context is further integrated through regional benchmarks. For instance, pesticide use is evaluated via an IFT (Treatment Frequency Index) compared against the regional average for the relevant "Petite Région Agricole", and nitrogen rates are interpreted against reference ranges. The Living Soils Score uses soil organic carbon relative to storage capacity, pH and site-specific structure and bioturbation data derived from field tests, again anchoring results in local soil properties.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>Agriboussol aims to "address all the challenges of transition" and covers several ecological dimensions in a structured way. The impact framework measures soil health (Living Soils Score), climate (carbon storage, GHG emissions), biodiversity (composite biodiversity score) and, indirectly, water and nutrient-loss pressures through nitrogen balance and pesticide-use indicators. The agronomic performance framework further operationalises key levers of transition, soil cover, carbon return, nitrogen autonomy, crop diversity, agro-ecological infrastructure and pesticide dependency, at cropping-system level. These indicators are conceptually linked to Earthworm's broader narrative that agriculture must support planetary boundaries and respond to socio-economic challenges such as difficult working conditions, generational renewal and low farmer added value. In the explanatory note, Earthworm states that Agriboussol is systematically coupled in projects with economic incentives and training for farmers, and that it is aligned with frameworks (SAI, WBCSD) that explicitly include social and economic outcomes. This helps connect environmental performance with value-chain remuneration and capacity-building. However, in the core documentation, the measured indicators are almost entirely environmental or agronomic. Farm autonomy is addressed through nitrogen autonomy and reduced dependence on external inputs, but income, profitability, labour conditions, or rural-livelihood indicators are not formally part of the indicator set. Similarly, social outcomes such as community resilience, worker well-being or land-tenure security are discussed in the context chapter but not operationalised into metrics</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>Agriboussol is presented as a single tool to meet the needs of multiple actors in the transition: farmers, cooperatives, manufacturers and retailers. It is structured into three complementary frameworks, impact (for corporate reporting and claims), agronomic performance (for farmers) and support (for advisors), to avoid duplication of tools and methodologies and to enable the same data to inform different purposes (communication, farm advice, incentive design). The tool is integrated into the Mes Sols Vivants platform, where each farmer can access their data, and is designed to interoperate with existing schemes such as Label Bas Carbone. This interoperability should reduce reporting burden when farmers participate in multiple initiatives. Agriboussol also relies partly on remote sensing (for cover duration) and uses standardised soil analyses and regional statistics, which can support scalability and comparability across farms. At the same time, the documentation shows that Agriboussol requires detailed data collection: farm structural data, fuel use, parcel-level PAC XML files, cropping-system descriptions, rotations, tillage operations, fertilisation, irrigation, yields, soil analyses, and pesticide records. Additional indicators in the support framework (STIR, humic balance, irrigation consumption, repeated spade tests) further add to monitoring demands. While the tool is described as pragmatic and farmer-oriented, the documents do not provide quantitative information on costs (financial or time), nor explicit evidence on uptake among smaller or resource-constrained farms.</p>	
AGRONOMIC ENABLING VALUE	<p>Agriboussol is explicitly framed as a transition management tool for farmers, not just a reporting system. The agronomic performance framework focuses on indicators chosen because they are measurable, address environmental issues and are "activated by practices accessible to the farmer". These include duration of live soil cover, carbon returned and humified, nitrogen autonomy, global nitrogen balance, crop diversity, biodiversity-supporting landscape features, and pesticide-use intensity. Each indicator is linked in the documentation to agronomic levers such as cover-crop design, tillage reduction, rotation diversification, fertiliser strategy and habitat management. The support framework strengthens this enabling role. It incorporates additional indicators (humic balance, STIR, irrigation consumption, spade test results) and provides decision-support tools such as dashboards, decision trees and a structured "support path" that helps farmers prioritise actions. Training workshops cover both the use of indicators and specific technical topics, and there are dedicated sessions for redesigning cropping systems in line with farmer objectives. In the explanatory note, Earthworm emphasises that within projects Agriboussol is embedded in broader advisory and incentive programs, with performance tracked over time to show progress in soil fertility, biodiversity, reduced input dependence and farm autonomy. The categorisation of farmers into levels of transition (Committed, Transition, Advanced, Expert) is based on indicator performance and improvement, encouraging continuous learning and innovation rather than a simple pass/fail certification.</p>	

PROGRAM

Carbon by Indigo

MRV PROVIDER

Indigo Ag

OVERVIEW

Carbon by Indigo is a U.S.-based soil carbon and GHG MRV program that pays farmers for verified emissions reductions and carbon sequestration under ACR and CAR methodologies. It combines field-level modelling (DayCent-CR), remote sensing, soil sampling, and multi-year historical management data. The program works with regional partners to provide local agronomic support and offers digital decision-support tools. While water, biodiversity, and social co-benefits are referenced, monetisation is primarily linked to quantified CO₂e outcomes.

INFORMATION ASSESSED

Indigo Carbon Program

Independent descriptions of DayCent-CR model

Indigo's sustainability marketplace and partner announcements

Public carbon credit issuance reports (CAR / ACR registry)

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological outcomes

- Soil carbon removals (tCO₂e/acre) – modelled by DayCent-CR
- GHG emission reductions from: Fertilizer use, Tillage practices, Fuel use
- Crop rotations
- Avoided emissions from practice changes
- Field-level baselines (3–5 years of historical data)
- Water impact metrics (runoff reduction, water savings; used in corporate programs)
- Co-benefit metrics used in reporting: Reduced runoff Version, Reduced nutrient loss, Increased vegetative cover, Biodiversity impacts (qualitative or modeled)

SCOPE

Field Scope (micro-level)

- Field boundaries mapped individually (uploaded or drawn)
- Field-level modelling with DayCent-CR
- Remote sensing confirms field-specific practices
- Soil sampling stratified by field conditions
- Baselines and additionality evaluated per field

Farm Scope (whole farm level)

- Program operates on multi-field enrolment, but not whole-farm mandatory
- Quantification aggregated across fields for farmer payments
- Economic and practice incentives apply across farm operations
- No whole-farm GHG inventory or biodiversity assessment
- Supports diverse farm sizes through partner networks and digital tools

Spatial Scope (geographic level)

- Lower 48 U.S. states (national availability)
- Localized adaptation via:
- Soil sampling
- Local weather data
- Crop/type-specific model calibration
- Regional agronomy partners

PROGRAM
Carbon by Indigo

MRV PROVIDER
Indigo Ag

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>The program demonstrates strong contextual differentiation at field level. All assessments, monitoring and enrolment decisions are carried out on a field-by-field basis, and farmers retain discretion over which practices are adopted based on local soils, climate and operational capacity. Carbon baselines and outcomes vary according to soil type, climate zone, crop type and management history, supported by a five-year historical lookback and updated baselines over time. The program operates across more than 20 European countries and multiple agro-climatic zones, and collaborates with local agronomy partners to ensure recommendations are regionally relevant.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>The program quantifies and verifies greenhouse gas emission reductions and removals with a high level of rigour, including reported average reductions and removals per hectare across participating farms. Additional ecological co-benefits such as increased crop diversity, habitat features, and reduced bare soil, are described and, in some cases, under development for future tracking.</p> <p>However, these co-benefits are not currently required outcomes for participation or verification, nor are they integrated into the crediting logic. Social dimensions are described qualitatively (peer learning, reduced labour intensity, community engagement), but they are not measured through defined indicators. Economic performance is partially quantified through carbon revenue distribution and reported input cost savings in specific examples, but farm-level economic resilience or livelihoods are not systematically measured across the program. As a result, regeneration is operationalised primarily through carbon outcomes, with other ecological, social and economic dimensions remaining ancillary rather than integrated</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>Carbon by Indigo is designed to reduce MRV burden while complying with the requirements of recognised carbon standards such as ACR and CAR. The program uses a grower-facing digital platform that streamlines data collection through a "crop plan" approach rather than detailed event logs, reducing data entry effort, particularly for farms with multiple fields. Flexible boundary uploads, pre-filled templates, and the use of remote sensing further limit documentation requirements. Farmer participation is supported through centralised assistance and a network of more than forty regional partners. Indigo also provides free educational and decision-support tools, including Carbon College, a Carbon Calculator, and a Cover Crop Selector. Measurement combines modelling with targeted soil sampling to balance cost and accuracy. Nevertheless, participation still requires multi-field data entry, soil sampling at scale, and verification processes that may remain demanding for very small farms.</p>	
AGRONOMIC ENABLING VALUE	<p>Carbon by Indigo provides a range of decision-support and educational tools, including a Carbon Calculator, cover crop selector, and ongoing advisory engagement through partners and customer success teams. Farmers receive feedback related to practice adoption and estimated climate performance, and the program encourages long-term participation to support transition.</p> <p>However, agronomic feedback is primarily oriented toward carbon performance and program eligibility, rather than toward comprehensive, farm-specific diagnosis of soil function, nutrient cycling, biodiversity, or system resilience. The MRV system itself does not generate integrated agronomic insights beyond carbon proxies, and learning depends largely on external advisory services rather than embedded outcome-driven feedback loops.</p>	

PROGRAM

Certified Regenerative

MRV PROVIDER

A Greener World

A GREENER WORLD

OVERVIEW

Certified Regenerative is a whole-farm, outcome-oriented certification that evaluates regenerative progress through a multi-year, farm-specific Regenerative Plan. Rather than prescribing fixed practices, farms identify regionally appropriate actions to improve soil health, biodiversity, ecosystem resilience, and nutrient cycling. Annual audits assess progress toward long-term outcomes. The system emphasises accessibility, relatively low-cost measurement tools, and alignment with other AGW certifications, and is designed to be applicable across diverse farm types and geographies.

INFORMATION ASSESSED

A Greener World website (Certified Regenerative Standard, producer resources, audit requirements)

Certified Regenerative by AGW - Input for EARA

AGW Standards: Certified Regenerative (latest public version)

Carbon Cycle Institute materials

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological:

- Soil health improvement (structure, organic matter, biological function)
- Plant and crop diversity
- Animal diversity (for mixed systems)
- Increased ecosystem resilience
- Water cycle function (infiltration, runoff reduction)
- Improved nutrient cycling and closed-loop systems
- Reduced external input dependency
- Habitat, hedgerow, and ecological feature protection
- Regenerative grazing/rotation outcomes (for livestock)

Social / Economic:

- Risk assessment + mitigation for ecological, social, and economic risks (via Regenerative Plan)
- Farmer wellbeing considerations embedded in planning (public AGW guidance)
- Farm enterprise viability and resilience (qualitative, plan-based)

SCOPE

Field Scope

- Standard applies at whole-farm level, not single fields.
- Auditors assess representative fields, grazing areas, and ecological zones.
- Soil, biodiversity, and water outcomes are monitored through evidence-based field observations and documented change over time.

Farm Scope

- Certification applies to the entire operation (all enterprises, land parcels, livestock, crops).
- Each farm must maintain:
 - A multi-year Regenerative Plan
 - Annual updates and evidence of progress
 - Compliance with AGW's baseline standards (environmental + welfare)
 - Works across livestock, arable, horticulture, agroforestry, mixed systems.

Spatial Scope

- Standard is globally applicable, with adaptation to regional context via:
 - Region-specific implementation guidance
 - Locally adapted practices
 - Auditor interpretation relative to pedoclimatic realities
- Used in North America, UK, EU, Africa, Australasia (varied farm sizes and systems).

PROGRAM
Certified Regenerative

MRV PROVIDER
A Greener World

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>The program is designed around a plan- and outcomes-based approach that explicitly avoids prescriptive, one-size-fits-all practices. Farms are required to develop a multi-year, farm-specific Regenerative Plan that reflects local soils, climate, seasons, production systems and operational constraints. Beneficial outcomes such as soil health, plant and animal diversity, and system resilience are translated into regionally appropriate practices rather than fixed global requirements. Annual monitoring allows progress to be assessed while accommodating seasonal variability and year-to-year climatic differences. This structure embeds adaptation to time and place directly into both implementation and evaluation.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>Certified Regenerative is explicitly structured to address regeneration as a multi-dimensional process. The standards incorporate ecological, human/societal and economic considerations, and the Regenerative Plan is used to identify risks, outline mitigation strategies and highlight opportunities for improvement across these dimensions. This goes beyond single-issue metrics such as carbon or yield alone and reflects an intention to recognise co-benefits related to biodiversity, resilience and farm viability. However, while multiple dimensions are included within the framework, public documentation does not clearly demonstrate that social and economic outcomes are consistently quantified and tracked through defined outcome indicators alongside ecological ones. Integration is therefore strong at the level of design and intent, but only partially evidenced at the level of measurable outcomes.</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>The program is designed to support regenerative transition through a structured planning and verification process, but it places a substantial share of the administrative and documentation effort on the farmer. Participation requires the development and ongoing maintenance of a detailed Regenerative Plan, annual documentation of practices and outcomes, and preparation of evidence for third-party audits. Publicly available materials do not quantify the time commitment required or describe mechanisms that significantly reduce paperwork or data entry for farmers. In addition, the cost structure of the program is not transparently documented. Certification fees, audit costs, and ongoing annual expenses are not clearly disclosed, nor is there evidence of how costs and administrative effort scale across different farm sizes or production systems. Farmer feedback indicating a high paperwork burden and significant time investment is therefore consistent with the program design as described.</p>	
AGRONOMIC ENABLING VALUE	<p>Agronomic decision-making is a central element of the program. The required Regenerative Plan links farm-specific management changes directly to monitored results, creating a feedback loop between actions and observed outcomes. Annual monitoring and auditing allow farmers to review progress, adapt practices and track improvements over time. The focus on biological health, closing input loops and supporting long-term productivity ensures that data collection is not only for verification purposes, but also supports learning, planning and adaptive management at farm level.</p>	

PROGRAM

Climate Beneficial™ Verified

MRV PROVIDER

Fibershed

OVERVIEW

Climate Beneficial™ Verified is a whole-farm verification program for regenerative fibre production in the United States. It combines on-farm soil testing, annual data collection, environmental modelling, and satellite monitoring to track outcomes across soils, watersheds, biodiversity, carbon balance, and communities. The program is based on Whole Farm Plans and regionally embedded technical assistance to ensure local ecological and cultural relevance. Verification includes annual monitoring of practices, ecological indicators, and market-linked outcomes, and currently applies to fibre crops such as cotton and wool.

INFORMATION ASSESSED

Climate Beneficial™ Verified - Input for EARA

Climate Beneficial™ Update (slides) (2024)

Fibershed website (Climate Beneficial™ Verified program)

Carbon Cycle Institute materials

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological:

- Soil health improvement (structural + biological indicators)
- Soil organic carbon stock (baseline + annual updates)
- Carbon balance (GHG emissions, carbon pools)
- Water use efficiency
- Water infiltration / aquifer recharge
- Reduction in water pollution
- Biodiversity indicators
- Reduced toxicity load (pesticide and synthetic chemical dependency)
- Reduced fossil fuel dependency
- Synthetic nitrogen use reduction

Social / Economic:

- Grower access to funding, cost-shares, and fibre premiums (market-derived)
- Compliance with labour requirements
- Community engagement metrics (farm tours, local partnerships)
- Economic resilience indicators suggested in framework (non-numeric)

SCOPE

Field Scope

- Whole-farm verification includes all fields and fiber-relevant land units.
- On-farm soil sampling, practice monitoring, and verification occur at field or management-zone scale.
- Remote sensing and modelled indicators are used at field level to track practice adoption and outcomes.

Farm Scope

- Applies to the entire farming enterprise, not individual parcels.
- Whole Farm or Carbon Farm Plans cover all land, livestock, and fibre-producing areas.
- Annual verification requires updates on environmental, social, and economic indicators.
- Designed for cotton and wool currently; hemp/flax planned for 2026.

Spatial Scope

- Currently active in four U.S. regions
- Planning expansion to additional U.S. regions and fibre types.
- Regionally adapted technical assistance delivered by local partners.

PROGRAM

Climate Beneficial™ Verified

MRV PROVIDER

Fibershed

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>CBV is presented as a planning-led system rather than a fixed checklist. Public descriptions emphasize that producers develop Carbon Farm Plans with technical experts, selecting practices suited to their landscapes. Fibershed materials describe the program as regionally rooted (originating in Northern California) and replicated to other U.S. regions through scaling efforts. This structure supports adaptation to different soils, climates, and production systems because practice packages are developed through farm planning rather than uniformly prescribed.</p>	
	<p>CBV prioritizes ecological and climate outcomes: program materials report aggregate CO₂e impacts and describe soil testing/data collection to track changes such as soil organic matter/carbon. Fibershed also describes an "Outcomes Framework" spanning environmental and social categories, and the verification standards include goals such as supporting resilient producer livelihoods. In publicly accessible CBV materials, the ecological/climate measurement approach is the most explicit, while social and economic components are primarily described through program intent (livelihood resilience) and mechanisms (technical/financial support, premiums, commitments) rather than clearly defined quantified indicators that are measured at farm level and integrated into MRV outputs.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>CBV is described as a verification rather than certification program with a focus on farmer accessibility. Data submission occurs through standardized templates and practice documentation (photos, records). Technical assistance providers support growers in meeting requirements and applying for funding. Fibre premiums flow directly to growers, and cost-share opportunities (local, state, federal) are facilitated by the program. Verification processes are adjusted to grower scale and refined using grower feedback. On-farm monitoring relies on soil tests, models, and remote sensing. The system does not require farmers to use specialised proprietary MRV tools beyond standard documentation and sampling processes. Although no explicit fee information is published, the program structure suggests an intention to balance rigour with accessibility by combining technical assistance, cost-sharing, and market-linked incentives.</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>Growers begin with Whole Farm Planning or Carbon Farm Planning. These plans evaluate baseline stewardship, identify regenerative opportunities, and prioritise practices based on projected ecological benefits. Technical assistance providers help interpret monitoring results and adapt plans to regional and farm conditions. Annual review of outcome metrics including soil tests, biodiversity indicators, and carbon balance creates a feedback loop that can inform adjustments in practices such as cover crops, compost use, grazing, nutrient management, and habitat restoration. The program also evaluates practice implementation costs and market opportunities annually, which may influence decisions around adoption and sequencing of regenerative actions. Based on this structure, CBV provides ongoing information linking observed ecological changes to operational decisions.</p>	
AGRONOMIC ENABLING VALUE		

PROGRAM

Climate Farmers MRV

MRV PROVIDER

Climate Farmers

CLIMATE
FARMERS

OVERVIEW

Climate Farmers' MRV framework is an outcome-based system designed to measure, verify and score regenerative agriculture performance over time. It combines a baseline assessment, a farmer-specific regeneration plan, annual re-measurement on the same plots, and verification of both practices and outcomes. The framework explicitly measures ecological, economic and social impact areas and aggregates results into a single regeneration score, benchmarked against baseline, regenerative peers and conventional farms. Farms can be recognised as "in transition" after practice verification and certified as regenerative once outcome improvements are demonstrated across soil, biodiversity and water, and later socio-economic dimensions.

INFORMATION ASSESSED

Climate Farmers – Measuring, Reporting and Verifying Regenerative Outcomes

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological (verified practices; outcomes mentioned but not specified as quantified indicators)

- Organic certification status (entry requirement)
- Minimum tillage / reduced soil disturbance (practice)
- Cover crops / soil cover (practice)
- Crop rotation / diversification (practice)
- Organic fertilisation (practice)
- Efficient irrigation / water management (practice)
- Biodiversity protection / functional biodiversity (practice/proxy)
- Planned grazing (where applicable)
- Agroforestry / forest restoration (mentioned in positioning)

Social (claims/intent; not defined as quantified indicators):

- Dignified working conditions, knowledge access, generational continuity, community-based agriculture (described conceptually).

Economic (claims/intent; not defined as quantified indicators):

- Reduced reliance on external inputs, stable yields, long-term farm viability (described conceptually).

SCOPE

Field Scope

- Field-level practice and soil data used as MRV inputs
- Soil sampling applied selectively, not uniformly across all fields

Farm Scope

- Whole-farm aggregation of climate and regenerative indicators
- Annual or periodic reassessment

Spatial Scope

- Primarily Europe, expanding
- Context handled through modelling and advisory interpretation

System scope

- Hybrid MRV + advisory system underpinning:
- Carbon and ecosystem-service pilots
- Policy pilots (CAP, eco-schemes)
- Farmer transition support

PROGRAM
Climate Farmers

MRV PROVIDER
Climate Farmers MRV

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>Climate Farmers MRV is an outcome-based framework designed to measure, verify, and score regenerative agriculture performance over time. It combines a baseline assessment, a farmer-specific regeneration plan, annual re-measurement on the same plots, and verification of both practices and outcomes. The framework explicitly measures ecological, economic, and social dimensions and aggregates results into a single regeneration score benchmarked against baseline and peer groups. Farms may be recognised as "in transition" before achieving full regenerative status once outcome improvements are demonstrated.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>Climate Farmers' MRV system quantifies ecological outcomes, particularly climate emissions, soil carbon proxies and land management indicators. Social outcomes are limited to engagement and participation metrics, and economic outcomes rely on indirect proxies such as input efficiency and access to incentives. There are no mandatory indicators for income, profitability or wellbeing.</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>Climate Farmers' MRV relies on detailed, repeated field measurements, including soil structure, microbiological activity, aggregate stability and mineral balance, taken annually on the same plots. This depth supports robustness but also implies significant time, expertise and potential laboratory costs. The framework does not specify cost-reduction mechanisms such as shared audits, remote sensing substitution, or tiered measurement intensity. While purpose-fit for high-integrity verification and product differentiation, the intensity of measurement may limit scalability or accessibility for smaller farms or low-margin systems.</p>	
AGRONOMIC ENABLING VALUE	<p>Climate Farmers places strong emphasis on agronomic learning. MRV outputs are not presented in isolation but discussed through advisory support, peer learning formats and transition planning. Farmers receive feedback on how management changes influence emissions, soil health and system performance over time. While not all feedback is diagnostic at fine resolution, the system clearly supports decision-making and innovation during regenerative transition.</p>	

PROGRAM

Farmer Management Platform

MRV PROVIDER

Klim

OVERVIEW

KLIM is a Germany-based carbon farming program designed to support agricultural climate mitigation by rewarding changes in farm management that reduce greenhouse gas emissions and increase soil carbon. The program combines farm practice data, modelling approaches, and advisory support to estimate climate impacts and generate climate-related claims or credits for corporate partners. Participation focuses primarily on arable farming systems and climate-relevant practices such as reduced tillage, cover cropping, and fertiliser optimisation. KLIM operates primarily as a climate-focused MRV and incentive program, linking farm practice change to quantified emissions outcomes rather than as a comprehensive regenerative agriculture certification system.

INFORMATION ASSESSED

KLIM program website (program description, farmer participation pages)
 Public partner communications and press releases describing KLIM's carbon farming approach.

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological:

- Greenhouse gas emissions from crop production (modelled)
- Climate impact of practice changes (e.g. reduced tillage, cover crops, fertiliser optimisation)
- Estimated soil carbon change (where applicable, model-based)

Economic (Partially addressed):

- Climate-related payments or incentives linked to estimated emissions outcomes

SCOPE

Field Scope

Climate impacts are assessed at field level, based on:

- Crop type and rotation
- Field-specific management practices (e.g. tillage, cover crops, fertiliser use)
- Emissions reductions and potential soil carbon changes are modelled per field, then aggregated.

Spatial Scope

Primarily Germany, focused on temperate arable systems

System Scope

- Climate mitigation in crop production
- Focus on greenhouse gas emissions and (where applicable) soil carbon
- Does not assess whole-farm regenerative performance

PROGRAM
Farm Management Platform

MRV PROVIDER
Klim

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>KLIM accounts for local variation through farm- and field-level data inputs, including crop types, management practices, and regional emission factors used in modelling. This allows estimated climate outcomes to differ between farms and regions. However, the program applies a standardised carbon accounting and eligibility framework across all participating farms. Public materials do not demonstrate regionally calibrated regenerative benchmarks or place-based thresholds beyond those required for climate modelling. Contextual differentiation therefore supports carbon accuracy rather than a broader, place-responsive regenerative assessment.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>Public descriptions foreground quantified CO₂ reduction and soil carbon storage as the primary measured and rewarded outcomes (credits per tonne), with limited published evidence of mandatory, quantified socio-economic indicators or an explicit ecological-social-economic linkage model.</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>Public information indicates that farmers receive direct financial rewards/payouts for verified reduction and storage services, and Klim positions the system as a farmer-centric digital platform intended to lower participation barriers and provide transition funding.</p>	
AGRONOMIC ENABLING VALUE	<p>The program provides guidance on climate-relevant practices and links management changes to estimated emissions outcomes, offering farmers a financial signal connected to practice change. However, feedback to farmers is primarily oriented toward climate metrics, such as emissions estimates or eligibility status. There is limited evidence that the system consistently returns context-rich, farm-specific diagnostic feedback on soil function, biodiversity, or system performance beyond climate impacts. Agronomic learning therefore exists indirectly through incentives and advisory input rather than through an embedded, multi-dimensional decision-support system.</p>	

PROGRAM

Integrity Grown

MRV PROVIDER

Advancing Eco Agriculture

OVERVIEW

Integrity Grown is a crop-specific regenerative verification program applied at the production-system level rather than the whole farm. It evaluates farms using a structured scoring approach that assesses management practices, soil and plant health indicators, and residue thresholds. Monitoring includes in-season soil testing, plant tissue or sap analysis, and residue testing, depending on the crop. Certification is awarded on a tiered basis and is reassessed annually. The program is currently implemented for selected crops and is designed to align agronomic performance, input management, and market requirements.

INFORMATION ASSESSED

Integrity Grown Submission - Input for EARA
 Integrity Grown website (program descriptions)
 Advancing Eco Agriculture (AEA) agronomy materials

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological:

- Soil organic matter change (via Haney soil test)
- Soil biological activity indicators
- Aggregate soil stability (reported in case studies)
- Reduction in plant growth regulators
- Reduction in insecticides
- Reduction in biologically suppressive synthetic fertilizers
- Glyphosate residue levels (in-season + finished cotton)
- Soil and plant nutrient status (plant sap analysis)
- Water-holding capacity (inferred through aggregate stability)
- Testing of non-GMO cotton performance in local environments

Social:

- Participation of growers from diverse socio-economic regions
- Early plans for labour/social impact metrics in winegrapes (living wages, labour conditions, community leadership)
- Recruitment in areas with low economic performance

Economic:

- Price premium for cotton ($\geq 10\%$ reported)
- Guaranteed floor price for cotton
- Assessment of cost barriers and market demand challenges
- Tiered scoring (bronze/silver/gold) linked to incentives
- Market access for regenerative cotton

SCOPE

Field Scope

- Soil sampling (Haney test) occurs early and post-season;
- Plant sap sampling occurs at intervals during the season;
- Glyphosate residue testing occurs in-field and on finished cotton.

Farm Scope

- Certification applies to a single crop at a time (e.g., cotton), not the whole farm.
- Performance is evaluated via crop-specific scorecards and a tiering system (bronze/silver/gold).
- The program focuses on crop-specific regenerative outcomes rather than full-farm regenerative transformation

Spatial Scope

- Currently active in U.S. cotton regions
- Winegrapes criteria in development for 2026.
- Wheat and coffee next in pipeline.

PROGRAM
Integrity Grown

MRV PROVIDER
Advancing Eco Agriculture

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>The program is structured around crop-specific standards rather than a single generic framework, explicitly recognising that regenerative pathways differ by production system. Evaluation logic allows for graded performance across a spectrum of practices, rather than fixed prescriptions, enabling farms to be assessed relative to their agronomic context. Requirements for inputs, tillage, and nutrient management vary by crop and production conditions. While thresholds are not geographically calibrated by region or landscape, the system embeds adaptation to farming context directly into its assessment structure, supporting responsiveness to time and place.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>Integrity Grown measures a wide range of quantified ecological indicators, including pesticide, herbicide and fungicide use, synthetic fertiliser inputs, nitrogen efficiency, cover cropping, soil carbon, soil biology, aggregate stability, water penetration, plant sap nutrient balance, and residue testing. These indicators are clearly defined and repeatedly measured, providing robust ecological outcome data.</p> <p>Economic integration is stronger than in many frameworks, as certification tiers are directly linked to guaranteed premiums and floor prices, explicitly connecting agronomic performance to farm income stability. However, social outcomes are not measured through defined indicators. While socio-economic inclusion, succession, and labour considerations are discussed, they are not operationalised through quantified metrics. As a result, ecological and economic dimensions are measurably linked, but social outcomes remain narrative rather than measured.</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>Certification costs are transparent and disclosed, and market premiums can offset these costs for participating farmers. However, the verification model relies on frequent in-season testing, laboratory analyses, and extensive farmer-led documentation, placing a substantial time and administrative burden on participants. Public materials do not quantify time requirements or administrative effort, and farmer feedback indicates that paperwork demands are significant.</p>	
AGRONOMIC ENABLING VALUE	<p>The program integrates several mechanisms that link ecological testing to management adjustments. Early-season and post-season Haney soil analyses assess soil organic matter and biological activity, while plant sap analysis at multiple points provides data on nutrient status. These tools can inform in-season nutrient application or practice changes.</p> <p>AEA agronomic experts oversee the program and provide growers with support. This suggests that technical interpretation of test results is available to farmers, although specific advisory formats are not described in detail.</p> <p>The scoring system rewards improvements in soil biology, reductions in inputs, and elimination of harmful practices over time. Because results influence tier status and potential premiums, growers may use these signals to modify practices.</p> <p>In-season feedback distinguishes this program from systems where farmers only receive an annual score at year-end. According to the submission, the program intentionally avoids relying exclusively on end-of-season data to allow adjustments within the same growing season.</p>	

PROGRAM

LENs

MRV PROVIDER

3Keel

3keel

OVERVIEW

LENs (Landscape Enterprise Networks) is a landscape-scale investment and MRV framework that links businesses with shared environmental dependencies to farmers who can deliver measurable improvements in soil health, water resilience, biodiversity, climate mitigation and farm resilience. It uses annual farm visits, a defined KPI set, regional benchmarking and impact reports to track change. Payments are made for practices and outcomes via multi-buyer landscape funds, with some innovation funding to test locally appropriate measures. The system is designed to be low-burden for farmers and aligned with emerging corporate accounting rules, especially for land-sector Scope 3 emissions.

INFORMATION ASSESSED

LENs - Input for EARA

Public LENs materials referenced in the submission (Impact report, landscape fact sheets).

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological:

- Soil organic matter / soil carbon
- Soil cover (%)
- Crop rotation diversity
- Tillage intensity / reduced till adoption
- Nutrient use efficiency (N, P)
- Pesticide use and reduction
- On-farm habitat proportion
- Perennial / woody features
- Cropping system diversity
- Emissions reductions and carbon sequestration (aligned with GHG Protocol LSRG, SBTi FLAG)
- Nitrogen use efficiency (runoff risk)
- Flood-risk mitigation indicators
- Water use efficiency (where relevant)

Social:

- Number and share of small farms participating (24.57% <50ha cited)
- Farmer engagement in LENs schemes and events
- "Farmer resilience & wellbeing" as an impact area, but specific indicators are not clearly defined or reported.

(implemented in 2025):

- Farmers reporting access to preferential financial products
- Farmers reporting improved profit margins and yields compared to conventional farmers in the same region
- Farmers reporting improved wellbeing as a result of LENs support

SCOPE

Field Scope

- Annual surveyor visits collect data at field level: tillage, cover, rotation, inputs, habitat strips, etc.
- KPIs like soil cover, rotation diversity and pesticide reduction are directly linked to specific fields or blocks.

Spatial Scope

Various European countries

System scope

- Whole-farm regenerative performance, covering biophysical functioning and management outcomes
- Designed to be applicable across arable, perennial, and mixed farming systems

PROGRAM
LENs

MRV PROVIDER
3Keel

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>LENs is explicitly landscape-based: each scheme is designed around specific soil types, climates, wildlife pressures and supply-chain dependencies. The submission gives concrete examples: in some northern regions, where cover crops are agronomically difficult, LENs supports sheep grazing on stubbles; in Hungary, habitat creation is adapted to deer damage and local biodiversity priorities. Measures are co-designed annually with participating farmers rather than imposed as a fixed global recipe. Contracts allow choice between practice-based or area-based payments, reflecting local economics and management structures.</p>
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>LENs integrates quantitative ecological and climate indicators: soil cover, SOC, tillage, nutrient efficiency, area of on-farm habitat, crop diversity and GHG impacts are part of the KPI set and are measured annually during on-farm visits. Water-related metrics are also quantified.</p> <p>For the social and economic domains, the submission identifies "Farmer Resilience & Wellbeing" as a formal impact area and mentions small-farm participation, improved access to finance, and innovation funding. However, it does not specify a robust set of quantitative social indicators, nor a standardised farm-level financial indicator set applied across all LENs farms. Economic elements are mostly inferred (payments, finance access) rather than measured as structured KPIs per farm.</p>
COST-EFFECTIVENESS & PURPOSE-FIT	<p>The submission specifies that LENs MRV is carried out by trained surveyors through a half-day annual visit per farm, during which data are collected via structured interviews and field checks. Farmers are not asked to complete complex digital reporting or modelling. Multi-buyer landscape funds mean a single MRV process serves several corporate participants, avoiding duplicate audits and lowering overall cost. LENs explicitly positions itself as an alternative to credit-based carbon schemes that require repeated sampling and high transaction costs. At the same time, the MRV is designed to be robust enough for Scope 3 reporting and compliance with emerging land-sector guidance.</p>
AGRONOMIC ENABLING VALUE	<p>LENs provides farmers with annual impact reports that present quantified indicators for their own farm and benchmark them against regional peers. These reports highlight specific areas (e.g. low soil cover, high tillage intensity, limited habitat) where improvement is possible. Transition plans are then co-designed with LENs agronomists using this data, which creates a clear feedback loop from MRV results to management changes for the next season. Innovation funding supports trials of new practices in response to locally identified constraints, and field events allow farmers to see and discuss results in real conditions.</p>

PROGRAM

Regen Ag Transition Program Beyond Carbon Framework

MRV PROVIDER

Soil Capital

OVERVIEW

Soil Capital's hybrid system adapts effectively across geographies through its data-rich, outcome-oriented design, integrating soil, climate, and management variables within a continuous improvement model. The Beyond Carbon framework aligns ecological and socio-economic outcomes through 30 indicators spanning soil, biodiversity, water, and livelihoods. Its ISO-certified MRV ensures efficiency, transparency, and compliance with major policy frameworks. Farmer usability is strong, though biodiversity and water indicators require deeper validation. Agronomic support is well structured but could be strengthened through more automated, adaptive feedback tools to enhance independence and long-term learning.

INFORMATION ASSESSED

Publicly available information to supplement
Soil Capital - Input for EARA

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological (quantified / outcome-based)

- Farm-level greenhouse gas emissions (CO₂e)
- Emissions reductions relative to baseline
- Soil carbon sequestration (modelled via DNDC)
- Fuel and input-related emissions
- Indicators derived from reduced disturbance, continuous soil cover, and organic/mineral input optimisation
- Direct soil data where available
- Biodiversity
- Habitat creation and maintenance
- Crop rotation length and diversity
- Pesticide use reduction and species-rich field margins
- Water management
- Water retention and runoff risk proxies
- Input-related water quality indicators (nutrient runoff prevention)

Social (quantified / tracked)

- Working conditions indicators
- Farmer wellbeing linked to reduced input dependence
- Farmer engagement and participation in the program

Economic (quantified / tracked)

- Input cost reductions (fertiliser, fuel, crop protection)
- Farm profitability proxies linked to circularity and input efficiency
- Financial remuneration through Soil Capital Units
- Time burden for participation (approximately 3 hours per year)

SCOPE

Field scope

- Field-level practice adoption verified via satellite imagery (OpTIS)
- Field-level soil and crop management data
- Field-specific modelling of emissions and sequestration

Farm scope

- Annual whole-farm GHG assessment
- Aggregation of field data into a farm-level Regen Ag Score
- Farm-level soil health, biodiversity, water, climate, and socio-economic scoring
- Farm-specific baselines and year-on-year tracking

Spatial scope

- Multi-country deployment (France, Belgium, United Kingdom)
- Cross-farm aggregation for benchmarking by crop, region, and geography
- Compatibility with landscape- and supply-shed level reporting through aggregation

System scope

- Primary agricultural production across arable systems
- Corporate Scope 3 emissions accounting and mitigation
- Generation and sale of Soil Capital Units for climate and regenerative claims
- Alignment with corporate reporting, carbon markets, and regulatory frameworks (GHG Protocol, SBTi FLAG, EU CRCF)

PROGRAM	MRV PROVIDER
Regen Ag Transition Program - Beyond Carbon Framework	Soil Capital

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>Soil Capital's MRV system combines outcome measurement, farm data collection, and advisory support within a continuous improvement framework. The Beyond Carbon Framework structures assessment across multiple domains, including soil, climate, biodiversity, water, and farm-level socio-economic indicators. Data are collected through a combination of farmer-reported information, modelling, and external datasets, with regular updates over time. The system is designed to operate across different European contexts and to support both farm-level decision-making and aggregated reporting for supply-chain and policy use.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>The "Beyond Carbon" framework integrates ecological, climatic, and socio-economic dimensions through five Regen Ag Score areas: soil health, biodiversity, water management, climate, and socio-economics. With 30+ indicators, Soil Capital quantifies co-benefits alongside carbon metrics, aligning with SAI's Regenerating Together framework and the EU Carbon Removal Certification Framework. The structure enables tracking of ecological resilience and farm productivity, with references to social wellbeing - these social indicators could be further developed and tracked. The inclusion of farm-level benchmarking and traceable reporting ensures multidimensional monitoring. Integration of biophysical and economic indicators is advanced and credible, though ongoing operationalisation of biodiversity and water data collection may benefit from increased external validation.</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>The MRV system is efficient, ISO 14064-2 certified, and independently audited by TÜV Rheinland. It combines modelled, remote-sensed, and soil-sampled data, ensuring accuracy and proportionality. Farmers spend approximately three hours annually on reporting, demonstrating usability and accessibility. Data is enhanced with open-access sources, reducing reporting burden and increasing completeness. The use of the CSA Registry for Soil Capital Units ensures transparency and avoids double-counting. The system is well-calibrated to policy and market requirements (GHG Protocol, SBTi FLAG, CRCF), achieving cost-effectiveness without compromising integrity.</p>	
AGRONOMIC ENABLING VALUE	<p>The program's agronomic enabling structure is strong but can be expanded. Farmers receive continuous support via the mySoilCapital platform and regional agronomy teams, ensuring guidance aligned with local realities. The system promotes data-driven reflection on soil health, inputs, and productivity. However, while the feedback loops and expert interactions are robust, broader integration of adaptive management tools and automated decision-support modules would further strengthen continuous improvement and reduce advisory dependency. The current framework meets the enabling criterion but could advance toward full alignment through greater digitalisation of agronomic insights and outcome-linked practice optimisation.</p>	

PROGRAM

Regenerate Forum Certification

MRV PROVIDER

Regenerate Forum

OVERVIEW

The Regenerate Forum Certification System, developed with ABCERT and Bioland, is a four-stage regenerative certification that combines biodiversity indicators, soil testing, farm planning, and remote sensing. It uses a points-based scoring system with defined criteria for soil health, crop diversity, biodiversity, livestock management, and renewable energy. Each stage builds on measurable progress, reducing synthetic inputs, enhancing biodiversity, and closing nutrient cycles, while providing education, peer learning, and advisory support. The program is still in pilot implementation in Germany.

INFORMATION ASSESSED

Regenerate Forum - Input for EARA

Regenerate Forum certification system design

Übersicht Zertifizierung document

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological:

- Soil analysis (extended soil tests, updates over time)
- Reduction of chemical plant protection inputs
- Reduction or elimination of mineral nitrogen fertiliser
- Crop rotation length (4–6 member rotations)
- Use of diverse cover crops
- Share of perennial or multi-year crops
- Number of indicator species (biodiversity key species)
- Biodiversity points from defined measures
- Share of renewable energy use
- Water retention measures
- Agroforestry area share

Social:

- Mandatory soil and practitioner training
- Continuing education and advisory participation
- Public education, farm events, and outreach activities

Economic:

- Farm development plan including farm economics
- Points from regenerative measures linked to staged progression

SCOPE

Field Scope

Measures soil, crops, biodiversity, and management practices at field level

Farm Scope

- Applies to the full farming operation
- Requires whole-farm development planning and staged progression

Spatial Scope

- Farm-level implementation within regional agronomic contexts
- Applicable across arable land, grassland, livestock, and energy systems
- No regional aggregation

System Scope

- Includes soil, crops, biodiversity, livestock, energy, education, and farm planning
- Covers practices, monitoring, advisory support, and certification stages

PROGRAM
Regenerate Forum Certification
MRV PROVIDER
Regenerate Forum
EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>The framework is explicitly designed as a staged progression that allows farms to enter at different levels depending on their starting point and context. Requirements and targets vary by production system (arable, grassland, livestock, horticulture), and farms can select from multiple regenerative and biodiversity measures to accumulate points toward stage advancement. The system allows diverse pathways such as agroforestry, grazing integration, crop rotation complexity, or compost use, to count toward progress, recognising different soil types, climates, and farm structures. This flexibility, combined with repeated assessments over time, embeds adaptation to both place and temporal dynamics within the certification logic.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>The certification addresses a broad range of ecological dimensions, including soil health, nutrient cycling, biodiversity, water retention, and input reduction. These are operationalised through explicit practice requirements, point systems, and some measured indicators (e.g. soil analysis, indicator species). Economic and social aspects are referenced through requirements such as farm development planning (including business aspects), education, cooperation, and public engagement. However, these dimensions are not measured through quantified outcome indicators, nor are they systematically linked to ecological performance. As a result, integration across ecological, social, and economic dimensions is present in design and intent, but remains partial at the level of measurable, interconnected outcomes</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>The framework combines multiple requirements: documentation, soil and plant analyses, satellite monitoring, education, advisory participation, and ongoing audits across four stages. While the staged entry lowers initial barriers and avoids an all-or-nothing threshold, the cumulative requirements imply significant time, coordination, and administrative effort by farmers as they progress. Publicly available materials do not disclose certification fees, monitoring costs, or typical farmer time commitments. The system's ambition and comprehensiveness suggest non-trivial effort, but without transparent cost and burden data, affordability and scalability across diverse farm types cannot be demonstrated. This supports an intermediate assessment rather than a low-burden one.</p>	
AGRONOMIC ENABLING VALUE	<p>The certification aims to improve agronomic performance through iterative feedback. Each farm develops a baseline and farm development plan that includes soil health testing, biodiversity monitoring, and nutrient management. Farmers receive soil and crop analyses with expert interpretation, guiding on-farm decisions. Regular updates, through soil testing and plant-sap analysis, create feedback loops between certification and management decisions. Training and field workshops complement the agronomic process by reinforcing practical understanding of regenerative principles (e.g., crop rotation design, composting, cover cropping). While the system's design provides strong agronomic support, empirical evidence from field data or multi-year yield studies has not yet been published, as the certification is in its pilot stage.</p>	

PROGRAM

Regenerate Outcomes Program

MRV PROVIDER

Regenerate Outcomes

OVERVIEW

Regenerate Outcomes is a UK soil-carbon program that combines whole-farm regenerative mentoring with high-integrity carbon credit generation under Verra's VM0042 methodology. Participating farms receive tailored support from Understanding Ag advisors, a field-by-field soil-carbon baseline to 60 cm, and ongoing monitoring of farm emissions and management via annual logbooks. Credits are verified every 1–3 years, with farms typically receiving 67% of gross carbon value and paying no upfront costs. The program emphasises farmer autonomy, adaptive Whole Farm Plans and compatibility with government schemes, positioning carbon revenues as an additional benefit alongside soil health, productivity and resilience gains.

INFORMATION ASSESSED

Regenerate Outcomes Program Handbook (2024)

Regenerate Outcomes – Project Design Document – Verified Carbon Standard (VM0042)

LIST OF ALL MEASURED RESULTS/OUTCOMES

Climate/ecological:

- Soil organic carbon stocks (t C/ha) to 60 cm, per field.
- Soil carbon sequestration / removals (tCO₂e/ha/yr) modelled between sampling rounds.
- Farm-level GHG emissions (tCO₂e) from:
- Inorganic fertiliser use.
- Organic manure applications.
- Lime applications.
- On-farm fuel use.
- Enteric and manure emissions from livestock.
- Net GHG balance and credited emission reductions/removals over a 25-year crediting period.
- Woody biomass carbon where relevant (hedgerows, agroforestry) via dedicated module.

SCOPE

Field Scope

- All eligible cropped and pasture fields (>1 ha)

Farm Scope

- Whole-farm GHG balance (all enrolled fields plus farm emissions sources) for each business; minimum standard entry 100 ha (reduced service possible from 50 ha).

Spatial Scope

- Farms in Great Britain (initially Northumberland pilot, scaling nationally).

System Scope

- Primary: climate outcomes (soil carbon sequestration and GHG reductions).
- Secondary (qualitative, not MRVed): soil health, biodiversity, water quantity/quality, farm profitability and farmer wellbeing.

PROGRAM	MRV PROVIDER
Regenerate Outcomes Program	Regenerate Outcomes
CONTEXT-SPECIFICITY	EARA REGENERATIVE INTEGRITY CRITERIA
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	Regenerate Outcomes' core MRV system is built around climate metrics. The Project Design Document applies Verra VM0042, quantifying soil organic carbon stock changes, modelled sequestration, and farm-level emissions from fertiliser, lime, fuel and livestock. Net GHG reductions and removals over a 25-year crediting period form the basis for Verified Carbon Units. The text notes environmental "co-benefits" such as improved water regulation, biodiversity uplift, reduced agrochemical use and wildlife recovery, but these are discussed qualitatively in the risk and safeguards sections rather than as monitored indicators with targets or thresholds. Socio-economic aspects appear mainly in narrative form. The documentation highlights reduced input costs, improved profitability, mental health benefits and lower risk for farms due to mentoring and the absence of upfront program costs. However, there is no description of quantitative tracking of these outcomes, such as profitability metrics, labour indicators, or social-impact benchmarks, nor are they integrated into crediting decisions. At the farm level, Whole Farm Plans are intended to align regenerative changes with business goals, and government-scheme compatibility is discussed. Yet these elements sit alongside, rather than within, a formalised MRV framework for social and economic outcomes.
COST-EFFECTIVENESS & PURPOSE-FIT	The program is structured to remove upfront financial barriers for farmers: mentoring, baselining, and credit generation are explicitly provided at "no upfront cost," and farmers can exit without repaying incurred costs or returning already-paid revenue. This design reduces participation risk, especially in early years when verification and soil sampling costs are highest. Cost transparency is unusually explicit for a carbon program: the handbook provides an estimated long-term average program operating cost of approximately £30/ha/year (noting that it varies by farm and is higher in earlier years). The program also explains the revenue-sharing structure (farm share and program share) and clarifies that verification is "costly," so verification intervals are optimised (not necessarily annual) to control costs and return value to farms. In terms of administrative load, the farmer-facing reporting requirement is framed mainly around a Look-back Logbook (historical baseline) and an Annual Logbook capturing field practices and farm emissions data, used to model carbon between soil sampling rounds. The program's monitoring plan further indicates structured QA/QC and audit checks (e.g., progress reports, field inspections, data validation processes), suggesting that verification effort is carried largely by the program infrastructure rather than the farmer. A limitation for broad participation is the minimum area requirement (standard services generally from 100 ha; reduced service down to 50 ha), which makes the model less inclusive for very small farms unless special arrangements apply.
AGRONOMIC ENABLING VALUE	Agronomic support is central to the Regenerate Outcomes model. The Program Handbook describes partnerships with Understanding Ag, whose mentors are experienced regenerative farmers and soil health specialists. Farmers receive one-to-one mentoring focused on reducing input costs, improving soil, plant and animal health, and maximising profitability. Before intensive mentoring begins, participants complete the "Regen Ag 101" video course, which introduces soil health principles, adaptive stewardship and ecosystem processes. This shared foundation allows subsequent advisory sessions to focus on farm-specific implementation rather than generic training. The Whole Farm Planning process, delivered through an in-person visit and online meetings, leads to a plan of key actions that the farmer commits to trial over the next two years. The documents stress that the plan is created by the farmer, not imposed, and can be adjusted as experience and conditions change. Annual farm visits, ongoing WhatsApp access, and group activities such as farm walks, webinars and a two-day Soil Academy extend this learning environment and peer-to-peer exchange. MRV outputs also feed back into management. Field-level soil carbon baselines and periodic re-measurements provide quantitative feedback on the impact of management changes, while farm emissions calculations highlight where fertiliser, fuel or livestock emissions are concentrated. These data streams support adaptive decisions aimed at improving soil function and carbon outcomes.

PROGRAM

Regenerating Together Program

MRV PROVIDER

SAI Platform

OVERVIEW

The Regenerating Together Program is a farm transition framework that applies a contextual analysis to identify priority sustainability and regeneration topics at site level. It uses a defined set of criteria covering soil, water, biodiversity, and climate to inform co-created improvement plans between farmers and supply-chain partners. Progress is monitored through a combination of self-assessment, group-level implementation, and verification approaches. The program is designed to be adaptable across regions and commodities and is often implemented within corporate sourcing strategies.

INFORMATION ASSESSED

SAI Platform Regenerating Together Outcome Quantification Guide v1.0

SAI Platform Regenerating Together Framework Narrative v1.1

SAI Platform Regenerating Together Program - Input for EARA

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological (quantified / outcome-based)

- Soil health and fertility
- Water infiltration rate
- Water holding capacity
- Soil organic carbon content
- Aggregate stability
- Area and duration of soil cover
- Nutrient use efficiency
- Nitrogen use efficiency
- Phosphorus use efficiency
- Potassium use efficiency
- Crop protection
- Integrated Pest Management adoption
- Environmental Impact Quotient (EIQ)
- Highly Hazardous Pesticide use (kg active ingredient/ha)
- Water use efficiency
- Version of irrigated water
- Biodiversity and habitat
- Area of on-farm habitat
- Number of cultivated crop and pasture species
- Climate
- CO₂-equivalent footprint
- Ammonia emissions
- Methane emissions
- Deforestation- and conversion-free status

Social (measured indirectly / process-based; not yet outcome-quantified)

- Farmer participation in implementation groups
- Engagement in context analysis and outcome selection
- Participation in advisory support and continuous improvement planning
- Farmer engagement level reflected through Regenerating Together performance levels (on-boarding, engaging, advancing, leading)

Economic (measured indirectly / enabling metrics)

- Input-use efficiency (fertiliser productivity proxies)
- Yield stability in relation to reduced inputs
- Eligibility for incentives and market access linked to performance levels
- Cost efficiency through group-level data collection and verification
- Reduced reporting burden via indicator selection and benchmarking alignment

SCOPE

Field scope

- Soil, water, biodiversity, nutrient, crop protection, and emissions indicators measured at plot or field level
- In-field sampling, visual assessments, laboratory tests, and remote sensing
- Field-specific baselines and repeated monitoring over time

Farm scope

- Aggregation of field-level indicators across the farm
- Whole-farm nutrient balances, habitat area, and emissions profile
- Farm-level Continuous Improvement Plans tracking progress against prioritised outcomes
- Advisory-supported practice selection and monitoring

Spatial scope

- Implementation group or supply-shed level aggregation across farms
- Landscape-level context analysis (soil erosion risk, water scarcity, biodiversity loss, energy use)
- Regional adaptation across diverse agroecological zones and production systems

System scope

- Primary agricultural production across annual crops, perennial crops, and beef and dairy livestock
- Corporate supply chains using the framework for sourcing, incentives, and reporting
- Alignment with external standards and benchmarking initiatives to avoid duplication
- No consumer-facing certification; designed for corporate programs, finance, verification, and reporting

PROGRAM
Regenerating Together Program

MRV PROVIDER
SAI Platform

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>The framework requires a comprehensive context analysis at both farm and landscape levels, structured around 12 materiality criteria across four environmental impact areas (soil, water, biodiversity, climate). Scoring is relative, transparent, and evidence-based, ensuring site-specific prioritisation of risks and outcomes. The co-creation of continuous improvement plans between farmers, advisors, and implementation groups guarantees strong local ownership and adaptability.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>The framework is well-structured across ecological domains and includes farmer livelihoods as a fifth impact area. However, there is space for socio-economic indicators to be developed and operationalised. The impact correlation matrices and continuous improvement plans create systemic coherence across outcomes, but the lack of measurable livelihood indicators limits full integration of economic and social dimensions. The framework would achieve full alignment once farmer livelihood indicators are implemented and verified alongside the existing strong environmental metrics, ensuring balanced system-level assessment of regenerative performance. Additionally, it appears unclear if participants can specifically identify low exposure so not having to report i.e on pesticide use/reduction.</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>The RTF is explicitly designed for efficiency and scalability. Implementation at the group level reduces per-farm monitoring costs, and the hybrid verification model (desk and on-farm, stratified sampling) ensures credible yet pragmatic validation. The guidance documents (Quantification Guide, Assurance and Benchmarking Protocols) align with existing standards, preventing duplication and reducing reporting burden. The principle of using only relevant, actionable data and linking monitoring to improvement rather than compliance maximises value for both farmers and verifiers. However the FFDI/SAI RTF report looks time-consuming, with unclear costs and significant burden for smallholders and unclear costs.</p>	
AGRONOMIC ENABLING VALUE	<p>The framework provides agronomic support mechanisms depending on the level of regeneration. Farmers receive ongoing guidance from trusted advisors, agronomists, and experts throughout implementation. The continuous improvement plan formalises progress tracking and ensures that support activities (training, peer exchange, and practice adaptation) are verified through external audits. The framework's participatory approach enhances farmer autonomy and encourages critical agronomic reflection on trade-offs and synergies.</p>	

PROGRAM

Regeneration Index

MRV PROVIDER

Pour une Agriculture du Vivant

OVERVIEW

The Regeneration Index is an assessment tool that scores farms on a 0–100 scale using agronomic indicators related to soil management, tillage, inputs, crop diversity, biodiversity, and farmer training. The tool is accessible online and applicable across a wide range of production systems. Results provide a snapshot of practice alignment with agroecological and regenerative principles. The Index can be used independently by farmers or as part of broader initiatives linking regenerative practices to supply-chain commitments.

INFORMATION ASSESSED

PADV - Input for EARA

Public information from PADV on the Regeneration Initiative and RexAgri knowledge base.

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological:

- Soil cover (% of annual cover)
- Soil tillage intensity (4-level scoring)
- Organic Matter / Clay Ratio
- Carbon inputs (quantified biomass, residues, manure, grazing, compost)
- Nitrogen fertilization
- Herbicide TFI (quantified)
- Non-herbicide TFI (quantified)
- Weed regulation strategy
- Pest & disease regulation strategy
- Pollinator & auxiliary resources (hedgerows, flower strips)
- Cultivated diversity (crop + cover crop species counts)

Social:

- Training in agroecology (minimum 2 days or farmer group)
- Training/knowledge indicators (quantified as yes/levels)
- Participation in farmer groups

SCOPE

Field Scope

- Most indicators apply at field or crop rotation level (soil cover, tillage, carbon inputs).
- Crop-level data can be broad or precise depending on farmer input

Farm Scope

- Whole-farm scoring aggregated to a 0–100 Index.
- Applies across field crops, vineyards, orchards, and livestock (versions available upon request).

Spatial Scope

- Currently used only in France;
- International use would require indicator adaptation and threshold validation by local partners.

PROGRAM
Regeneration Index

MRV PROVIDER
Pour une Agriculture du Vivant

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>Verification is proportionate and structured to enable participation across farm sizes. The use of periodic soil testing, simplified scoring, and partial compliance recognition reduces administrative load and cost. Incremental progression through tiers allows continuous improvement without penalising smaller or transitioning producers. Oversight by the Verification Review Board ensures transparency and rigour while maintaining affordability. The system effectively balances scientific credibility with practical implementation and scalability.</p> <p>Cost-effectiveness could be increased through the implementation of remote sensing MRV to enable a quick and affordable analysis of ecological functions.</p>
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>The Regeneration Index provides robust, quantified ecological scoring across 12 agronomic indicators. This includes soil cover %, TFI (Treatment Frequency Index) pesticide metrics, carbon inputs quantified in biomass or organic matter, and biodiversity proxies. The social dimension is represented only through training participation, a single indicator worth 5/100 points; no labour, community, or livelihood metrics are quantified.</p> <p>PADV explicitly states that economic performance is not included in the Index, as economics are influenced by actors beyond the farmer and thus cannot be assigned to agronomic scoring. Instead, economic verification occurs externally through the Regeneration Initiative, which checks whether companies paid premium prices.</p>
COST-EFFECTIVENESS & PURPOSE-FIT	<p>The Regeneration Index is designed to be highly accessible: farmers can use a simulator without creating an account, or create a free account to store results. Data entry is flexible, broad crop-level info is sufficient for rapid scoring, while more detailed information is optional. No laboratory analyses or expensive measurements are required. For economic or contractual uses, a technician conducts verification, but this is an occasional requirement rather than an annual burden. PADV is actively developing features such as FMS data import and satellite-based soil/tillage/cover monitoring to reduce burden further.</p>
AGRONOMIC ENABLING VALUE	<p>PADV emphasizes agronomic support as a core pillar. The Index highlights where farmers can progress soil cover, carbon inputs, tillage strategy, biodiversity resources, and connects each result to practical guidance. Farmers are directed to RexAgri, a database of 470+ farmer-shared experiences on specific techniques, covering diverse crops and regions in France. This enables farmers to explore solutions relevant to their context and adopt iterative experimentation. Indicators are explicitly built to encourage auto-fertility, closing nutrient loops, and long-term productivity.</p>

PROGRAM

Regeneration International Standard

MRV PROVIDER

Regeneration International

OVERVIEW

The Regeneration International Standard (RIS) is a principle-based, globally intended certification designed to provide a simple, accessible pathway for farmers transitioning from degenerative to regenerative agriculture. The standard includes two certification levels and relies on farmer-written management plans to document improvements in ecological, social, economic, and cultural dimensions. Rather than imposing mandatory practices or quantitative benchmarks, RIS emphasizes guidance, prohibitions on synthetic inputs, and continuous improvement. It is explicitly designed to be user-friendly for smallholders and farmers in developing regions, prioritizing education, accessibility, and paradigm change over measurement-based MRV.

INFORMATION ASSESSED

Regeneration International - Input for EARA
 Regeneration International Standard – Slide Deck
 Public information on RIS: global rollout, certification structure, training programs, principles.

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological (qualitative):

- Increase soil organic matter (qualitative)
- Improve soil fertility (qualitative)
- Increase plant & animal biodiversity (qualitative)
- Manage ground cover and weeds
- Manage pests & diseases
- Reduce/eliminate prohibited synthetic inputs
- Introduce mosaic burning (where culturally appropriate)

Social / Economic (qualitative):

- Fair wages
- Gender equity
- Community engagement
- Cultural preservation
- Financial management planning
- Marketing management planning
- Ecosystem service payments (future AROES program, not integrated into the standard yet)

SCOPE

Field Scope

- No field-level MRV or quantitative indicators.
- Farmers document practices and planned improvements for each part of their land.
- Transition plans specify which prohibited inputs will be eliminated and how.

Farm Scope

- Whole-farm certification with two levels:
 Regenerative in Transition
 Regenerative A Grade
- Annual review of farmer-written management plans (environmental, social, economic, cultural).

Spatial Scope

- Intended global deployment across 80+ countries, with translations into Spanish and others.
- Adaptable to diverse climates, indigenous systems, and education levels.
- No regional MRV calibration because RIS focuses on principles, not quantified outcomes.

PROGRAM
Regeneration International Standard

MRV PROVIDER
Regeneration International

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>The standard deliberately avoids fixed benchmarks and prescriptive practices, instead requiring farmers to develop management and transition plans aligned with their own climate, soil, crops, education level and socio-economic context. This design choice is explicitly justified by Regeneration International as necessary to avoid disadvantaging smallholders and farmers in diverse regions. Operators are encouraged to progress at their own pace and adapt practices to local conditions, with audits assessing effort, direction and compliance with prohibitions rather than numeric targets.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>RIS clearly frames regeneration as multi-dimensional, explicitly covering ecological, social and economic aspects within mandatory management plans. Operators must address soil health, biodiversity, social fairness and economic management as part of certification.</p> <p>RIS intentionally rejects numeric benchmarks and outcome metrics, relying instead on qualitative plans, documentation and directional improvement. While this approach goes beyond single-issue environmental focus and avoids carbon-only framing, the absence of quantified indicators prevents full systemic integration under strict MRV criteria.</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>No laboratory tests, soil sampling requirements, modelling tools, or digital platforms are required. Certification relies on management plans written by farmers using their own language and style, reducing reporting burden. The standard is positioned for adoption by smallholders including those with limited literacy, by avoiding expensive MRV requirements and prescriptive rules. Regeneration International critiques complex MMRV systems as financially and administratively prohibitive for most farmers, and RIS is framed as an alternative designed to be "farmer-friendly" and accessible.</p>	
AGRONOMIC ENABLING VALUE	<p>RIS places strong emphasis on farmer empowerment and learning. Management plans are written by farmers in their own words and updated annually, encouraging reflection, planning and adaptive decision-making. Extensive guidance annexes and a university-accredited training course support agronomic knowledge development. The system prioritises enabling farmers to understand regenerative principles and apply them creatively rather than enforcing prescriptive checklists.</p>	

PROGRAM

Regenerative Agriculture Certification

MRV PROVIDER

CultivAé

 CultivAé
 Coopérative agro-écologique

OVERVIEW

Cultivae's Regenerative Agriculture Certification is an outcome-oriented framework that allows farms to define priorities based on local ecological and production contexts. The system combines environmental indicators with social and economic support mechanisms, including transition payments and value-chain coordination. Verification processes are designed to be streamlined and are often integrated with existing certification or contractual arrangements. Ongoing technical support and peer learning are central components of the program.

INFORMATION ASSESSED

CultivAé - Input for EARA
 Regenerative Agriculture Certification Cereals document

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological:

- Soil cover (months of bare soil before and after crop; qualitative thresholds)
- Cover crop diversity (number of species; presence of legumes or permanent cover)
- Tillage intensity
- Mineral nitrogen use (ratio to standard recommendation, %)
- Organic input use (presence/absence over last 5 years)
- Pesticide use (fungicide EIQ relative to benchmark; herbicide/insecticide use; mechanical weeding)
- Crop rotation diversity (number of crops in annual plan)
- Biodiversity practices (% land in ecological focus areas; companion crops; semi-perennial crops)
- Crop-livestock integration (grazing of cover crops, stubble, temporary grassland)
- Pilot outcome indicators (infiltration tests; planned soil biodiversity indicators)

Economic:

- Certification level achieved (Bronze / Silver / Gold)
- Total points above pillar thresholds
- Regenerative premium per tonne (level-linked)
- Per-point bonus payments
- Value-chain premium added to market price
- Tonnes marketed under RAC contracts
- Optional income from voluntary carbon credit participation

SCOPE

Field Scope

Parcel-level practices and indicators (soil cover, inputs, tillage, biodiversity actions, infiltration tests).

Farm Scope

Aggregation of practices across the whole farm (share of reduced tillage, rotations, livestock integration, improvement priorities).

Spatial Scope

Farm-level certification with regional calibration through farmer meetings and erosion-risk prioritisation; no fixed landscape-scale benchmarking.

System Scope

Primary agricultural production integrated with value-chain contracting and premiums; optional linkage to carbon markets; limited coverage beyond the farm gate.

PROGRAM
Regenerative Agriculture Certification

MRV PROVIDER
CultivAé

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>Farmers select relevant pillars according to local soil type, rainfall, erosion risk, and rotation patterns. The certification evolves dynamically through annual farmer meetings where priorities shift collectively in response to regional challenges. Social and economic realities are embedded through transitional premiums that support producers during the shift toward regenerative practices. The structure remains outcome-oriented, allowing local adaptation without prescriptive uniformity. This combination of environmental and socio-economic responsiveness gives the RAC strong contextual relevance and adaptability across diverse production systems.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>RAC unites ecological and economic regeneration within a coherent system. Environmental outcomes on soil, water, and biodiversity are paired with financial mechanisms that reward progress and inclusion. Transition payments and participatory governance ensure that social value creation is inseparable from ecological improvement. The framework's multi-actor design connects farmers, agronomists, and buyers in a shared accountability structure. Social metrics are primarily taken into account through the early-stage remuneration, and with specific knowledge-sharing sessions, but not entirely quantified or included as a regenerative process.</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>RAC is structured for operational simplicity and cost efficiency. Data entry requires limited time, verification is coordinated through value-chain actors, and compatibility with CAP and Vegaplan systems prevents duplication. Grouped audits and parcel aggregation lower entry barriers for smaller farms. Farmers do not pay for certification directly, and planned digitalisation of satellite monitoring will further streamline verification. The system maintains scientific rigour while remaining proportionate, making it cost-effective and suited to broad participation.</p>	
AGRONOMIC ENABLING VALUE	<p>Agronomic feedback and learning are integral to RAC's operation. Farmers receive rapid confirmation of certification levels, which are directly linked to remuneration, providing clear feedback on management choices. Data are reviewed by independent agronomists who provide clarification and guidance, and farmers are supported through advisory visits, training, peer exchange (e.g. WhatsApp groups), and regular meetings. The framework encourages identification of improvement areas via its point structure and supports adaptive management rather than pass/fail compliance. Although some outcome indicators (e.g. infiltration tests, soil biology) are described as under development, the current system already links measurement, advice, and decision-making in a way that supports on-farm learning.</p>	

PROGRAM

Regenerative Agriculture Framework

MRV PROVIDER

McCain

OVERVIEW

McCain's Regenerative Agriculture Framework is a supply-chain tool used to guide and monitor regenerative transitions within its potato production systems. It defines a set of indicators related to soil management, crop diversity, biodiversity, water use, and input intensity, with regionally adapted thresholds. Farms establish baselines and progress through defined tiers over time, supported by agronomic advice and digital tools. Monitoring combines field data, remote sensing, and benchmarking to track progress across participating regions.

INFORMATION ASSESSED

McCain's Approach to Regenerative Agriculture - Input for EARA

References included within the document (F24 Sustainability Report, Farms of the Future)

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological outcomes

- Soil tillage intensity (STIR scores)
- % soil coverage / days of live cover
- Crop diversity (% crop rotation, # crops, multi-species mixes)
- Toxicity load of pesticides (EIQ index)
- Farm & ecosystem diversity (% non-cultivated habitat)
- Water-use efficiency (smart irrigation, scheduling metrics)
- Soil organic matter / soil organic carbon (lab tests)

Socio-economic outcomes

- Training uptake and completion rates (tracked)
- Participation in peer groups and grower days
- Labour rights compliance (Human Rights Policy alignment)
- Community programs (Thriving Communities), qualitative but structured
- Regional capacity-building (language-adapted training; number of growers engaged)

Economic (quantified or proxy-quantified)

- Return on investment (ROI) from regenerative transitions (shared with growers)
- Cost-of-production changes (input reductions)
- Yield stability metrics (tracked across pilot farms)
- Access to financing (loans, grants, contract premiums)
- Long-term supply contracts / financial incentives

SCOPE

Field Scope (micro-level)

- Field-level indicators: soil cover, tillage intensity, pesticide toxicity, irrigation efficiency, rotation diversity.
- Soil health assessments conducted per field or management zone.
- Remote-sensing data used to verify cover and crop rotation.

Farm Scope (whole farm level)

- Whole-farm regenerative score with four tiers: Onboarded → Engaged → Advanced → Leading.
- Social, economic, biodiversity, and soil indicators applied at farm level.
- Action plans created with McCain agronomists via context analysis.

Spatial Scope (geographic level)

- Used globally in McCain sourcing regions (Northern & Southern Hemisphere frameworks).
- Regionally adapted thresholds (e.g., rotation complexity, days of soil cover).
- Integrated into Farms of the Future and Commercial Pilot Farms across multiple continents.

PROGRAM
Regenerative Agriculture Framework

MRV PROVIDER
McCain

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>McCain's regenerative program is implemented across diverse geographies using local agronomists and region-specific pilots, allowing adaptation in delivery and practice selection. Soil, climate and water context are considered operationally when advising growers. However, the core indicator set (soil health, emissions, water efficiency) and performance logic are defined centrally and applied consistently across regions. There is limited evidence of regionally calibrated thresholds or place-based benchmarks embedded in the program's evaluation framework. Contextualisation occurs mainly through implementation rather than through differentiated metrics or evaluation criteria.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>McCain's program addresses multiple dimensions of regeneration within a single framework. Ecological aspects are the most developed, with indicators and monitoring related to soil health, water use, emissions intensity, and land management practices. These are explicitly linked to climate mitigation and supply-chain resilience objectives.</p> <p>Social and economic dimensions are also acknowledged, particularly through farmer engagement, training, health and safety requirements, and an emphasis on long-term productivity and resilience. However, these dimensions are not measured as quantified outcomes within the same system. Social performance is primarily tracked through participation, compliance and program reach, while economic performance relies on indirect proxies such as yield stability or input efficiency rather than direct measurement of income, margins or livelihoods.</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>The framework is intentionally designed to minimise complexity while maintaining credibility. McCain reduces burden by taking an active role in data collection, validation, and reporting. The seven required indicators keep MMRV manageable, with flexible entry points across four tiers. Remote sensing validates cover and crop diversity without repeated field visits. Onboarding includes training modules accessible in multiple formats and languages. Farmers choose indicators most feasible for their context, avoiding one-size-fits-all requirements. Financial barriers are addressed through partnerships with banks, cost-sharing grants, long-term contracts, and region-specific financial analysis. Integration with SAI Platform's "Regenerating Together" enables harmonisation with policy and supply-chain requirements. Overall, the framework is well suited to its purpose and accessible to diverse farm sizes.</p>	
AGRONOMIC ENABLING VALUE	<p>McCain supports agronomic decision-making through several mechanisms. First, field teams and agronomists work directly with farmers to interpret context-analysis findings, baseline soil health, and tailor action plans. Farmers receive ongoing feedback via training, grower groups, dashboard tools, and digital irrigation scheduling systems. Soil organic matter, tillage intensity, pesticide toxicity, water-use efficiency, and rotational diversity indicators provide concrete agronomic signals that farmers can use to improve biological soil health and reduce external inputs. Precision irrigation, IPM, organic amendment integration, and nutrient-use optimisation support functional improvements in soil structure, water retention, and crop resilience. Commercial Pilot Farms and Farms of the Future act as living labs, generating regionally relevant agronomic insights transferable to the wider network.<</p>	

PROGRAM

Regenerative Agriculture Framework

MRV PROVIDER

Nestlé

OVERVIEW

Nestlé's Regenerative Agriculture Framework defines a global approach to integrating regenerative principles across its agricultural supply chains. It is structured around key pillars such as soil health, biodiversity, water stewardship, crop and livestock integration, and landscape action. Commodity-specific Farm Assessment Tools are used to establish baselines and monitor progress, supported by digital data systems and local agronomic implementation. The framework is designed to align farm-level practices with Nestlé's broader climate and sourcing strategies.

INFORMATION ASSESSED

The Nestlé Agriculture Framework (Jan 2024)

Nestlé Agriculture Framework – Measures & Farm Assessment Tools

Nestlé - Input for EARA

Public Nestlé sustainability and regenerative agriculture disclosures

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological:

- Soil organic matter (%)
- Soil cover (months/year; % land covered)
- Crop rotation diversity (number of crops)
- Fertilizer productivity (yield per kg N applied)
- % farmland under regenerative practices
- Pesticide use (# applications)
- % land with biodiversity infrastructure (hedges, buffers, habitats)
- Water productivity (l/kg output)
- Carbon footprint (CO₂e, estimated using tools such as Cool Farm Tool)

Social:

- Farmer participation and engagement levels
- Training received (regenerative practices, farm economics)
- Record-keeping practices
- Household income estimates (self-reported, not verified)

Economic:

- Yield monitoring
- Fertilizer productivity
- Profit & loss calculation (reported, not standardised or audited)

SCOPE

Field Scope

Field-level practice and outcome data (soil cover, tillage, SOC where measured)

Farm Scope

Farm-level aggregation of regenerative indicators
Continuous improvement pathways

Spatial Scope

Global, across Nestlé sourcing regions.
Indicators are globally defined, with regional target-setting encouraged but not mandatory or standardised

System Scope

Corporate supply-chain regenerative agriculture framework
Supports Scope 3 climate reporting and supplier engagement
Not a standalone certification or independent MRV standard

PROGRAM
Regenerative Agriculture Framework

MRV PROVIDER
Nestlé

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>Nestlé's regenerative agriculture framework is built on a centrally defined set of principles, indicators, and maturity levels that are applied globally across highly diverse agricultural contexts. While implementation is carried out through local partners and agronomists, the underlying evaluation logic is not systematically calibrated to specific soils, climates, or socio-economic conditions. Reference thresholds and progression criteria remain largely uniform across regions, and public documentation does not demonstrate the use of bioregional benchmarks or place-based performance baselines embedded in the measurement system. As a result, contextual adaptation occurs primarily at the level of program delivery rather than through a place-responsive assessment design.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>The framework includes a broad set of quantified environmental indicators, such as soil cover, crop rotation diversity, input use, and selected biodiversity and climate proxies. Economic and social aspects are also referenced, including farmer training, engagement, and, in some supply chains, limited economic tracking. However, social and economic outcomes are not measured in a consistent or comparable way, nor are they systematically linked to ecological performance to demonstrate co-benefits or trade-offs. As a result, regeneration is assessed primarily through environmental performance, with partial but incomplete integration of social and economic dimensions.</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>Nestlé's framework is designed to scale rapidly across large supply chains by relying on existing supplier relationships, corporate reporting systems and partner-led implementation. This approach reduces administrative burden for farmers and enables broad participation. However, the limited depth of measurement and the absence of independent or outcome-based verification mean that the system primarily tracks practice adoption and participation rather than demonstrable regenerative change. While this design supports communication and internal reporting, it provides limited assurance that claimed transitions correspond to verified improvements at farm level. As a result, the system risks functioning more as a sustainability positioning or rebranding mechanism than as a tool that reliably evidences regenerative transition through measured change.</p>	
AGRONOMIC ENABLING VALUE	<p>Nestlé provides farmers with access to training, technical guidance, and incentives to adopt regenerative practices. Advisory support and pilot projects offer opportunities for learning and experimentation. However, the system does not consistently provide farmers with farm-specific diagnostic feedback derived from measured ecological responses, such as soil, biodiversity, or water indicators linked directly to management decisions. Feedback is primarily oriented around practice adoption and program participation rather than detailed, outcome-based insights. As a result, while the framework supports learning and transition at a general level, it offers limited data-driven decision support tailored to individual farm contexts.</p>	

PROGRAM

Regenerative Agriculture Scorecard

MRV PROVIDER

Danone

OVERVIEW

The Regenerative Agriculture Scorecard (DRAS) is a practice-based assessment tool used by Danone to evaluate regenerative implementation across its supply chain. It covers thematic areas including soil health, water, biodiversity, manure and nutrient management, and selected socio-economic aspects. Assessments are conducted through farm visits, structured dialogue, and crop-specific guidance. The scorecard is primarily used to guide engagement, track implementation status, and support continuous improvement rather than to produce a consolidated outcome-based MRV score.

INFORMATION ASSESSED

Danone DRAS Response - Input for EARA

Danone Sustainability Reports (2021–2023)

Danone Regenerative Agriculture Scorecard (DRAS) (open-source scorecard & guidance)

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological:

- DRAS evaluates practice maturity levels across four ecological pillars:
- Soil management (e.g. cover, tillage practices)
- Water management (qualitative practice assessment)
- Biodiversity (presence of practices / infrastructures)
- Manure management (livestock systems)
- Quantified outcome data (e.g. SOC, water use) may be included when available, but: Are not mandatory, are not consistently measured and not embedded as core indicators

Social: (qualitative)

- Farmer engagement through dialogue
- Feedback from farmers on relevance
- Qualitative recognition of social importance

Economic: (qualitative)

- Economic relevance of practices discussed
- Transition feasibility considered qualitatively
- No farm-level economic metrics measured or tracked

SCOPE

Field Scope

- DRAS evaluates practices at the field or plot level
- Field assessments are carried out by Danone field technicians through on-site visits

Farm Scope

- Whole-farm scorecard using maturity levels
- Covers dairy, crops, orchards, mixed systems
- Designed as a continuous improvement tool, not certification or MRV

Spatial Scope

- DRAS is used across Danone's global sourcing regions, including Europe, North America, Latin America, and Africa.
- Two hemispheric frameworks (Northern/Southern) ensure alignment with seasonality and climatic conditions.

PROGRAM
Regenerative Agriculture Scorecard

MRV PROVIDER
Danone

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>DRAS states it is "structured under one common backbone for all geographies," while noting that "specificities" are included through adapted scenarios to reflect farming-system fundamentals (e.g., irrigation systems, water courses, production type). It also states that comparing scores across different farms may not be appropriate because the tool can pose different questions depending on farming type and farm specificities, and it expects the tool to evolve with future climate/agronomic realities. These elements indicate some intentional design for context responsiveness. However, the available materials describe adaptation largely at the level of scenario variants and tool evolution, rather than clearly documenting regional calibration methods (e.g., locally validated thresholds/metrics by soil/climate zone) or verified place-based parameterization.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>The scorecard's core structure measures and scores practices across four environmental categories: Soil, Manure (dairy only), Biodiversity, and Water. Within these, it lists multiple agronomic/environmental criteria (e.g., soil cover, crop rotation, fertilization, soil organic matter, pesticide/weeds management, natural habitat, irrigation type/management, buffer zones, runoff contamination). While some items relate to farm management and resource use, the publicly available DRAS document does not present a defined set of quantified social outcomes (e.g., working conditions, health/safety, community outcomes) or quantified economic outcomes (e.g., profitability, net margin, cost of production) that are measured and linked to ecological performance in an integrated way. Danone's Water Policy references DRAS level requirements for certain supply-chain water-risk management expectations, but this reference still points to DRAS categories/levels rather than adding quantified socio-economic indicators into the DRAS measurement system.</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>DRAS is presented as a tool to help Danone technicians, partners, and suppliers assess farmers' adherence to regenerative practices, with an explicit continuous improvement intent rather than certification. It is intentionally designed to be accessible, low-burden and scalable across Danone's diverse supplier base. It relies on practice observation, interviews and existing farm information, with no mandatory soil testing or complex data submission. Reassessment occurs on a multi-year cycle, and the tool is used primarily by technicians and partners to structure dialogue and track progress. While DRAS is not fit for outcome MRV or finance-grade reporting, it is well aligned with its stated purpose as a supply-chain engagement and learning tool.</p>	
AGRONOMIC ENABLING VALUE	<p>DRAS is explicitly framed as a continuous improvement tool: it scores practices across multiple categories and levels (0-3) and aggregates a farm into bands (Initiated/Advanced/Best in class). It states there are "neither good nor bad figures" because the goal is to stimulate progress, and it provides descriptions of evaluated practices and "best practices" that regenerative agriculture fosters, with guidance on how to evaluate the practice on farm. These features can support decision-making by clarifying what management changes correspond to higher levels and by enabling repeat assessments over time. At the same time, the available material positions DRAS primarily as a standardized scoring framework of practices, with adaptation handled via scenarios rather than individualized agronomic diagnostics tied to measured biophysical responses at farm level. The documentation does not clearly evidence that farmers receive context-specific technical recommendations based on measured on-farm biological feedback (e.g., soil test-linked prescriptions, quantified response tracking) as a central MRV function.</p>	

PROGRAM

Regenerative Agriculture Standard

MRV PROVIDER

Rainforest Alliance

OVERVIEW

The Rainforest Alliance Regenerative Agriculture Standard (RAS) extends the Sustainable Agriculture Standard (SAS 2020) to incorporate regenerative agriculture principles within Rainforest Alliance's global certification system. It applies across diverse crops and geographies and is implemented through farm management planning, risk assessment, and third-party audits. RAS emphasises continuous improvement in soil health, biodiversity, ecosystem management, and farm resilience, while maintaining established social and environmental safeguards. The framework operates as a compliance- and practice-based certification system rather than a standalone MRV approach, supporting supply-chain assurance and sustainability claims at scale rather than quantified regenerative outcome measurement.

INFORMATION ASSESSED

Rainforest Alliance Sustainable Agriculture Standard (SAS) 2020

Rainforest Alliance webpages

Rainforest Alliance Regenerative Agriculture Standard - Farm Requirements v1.0

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological (primarily practice- and compliance-based):

- Soil conservation and soil management practices
- Biodiversity protection and habitat conservation
- Pesticide use restrictions and risk mitigation
- Water management and pollution prevention
- Climate risk management and mitigation practices

Social (compliance based):

- Labour rights and working conditions
- Occupational health and safety
- Child labour prevention
- Grievance mechanisms and worker representation

Economic:

- Farm management planning
- Record-keeping and traceability
- Continuous improvement processes

SCOPE

Farm Scope

- Certification decisions are made at the whole-farm or farm-group level, not per field.
- Regenerative Agriculture Standard requirements are applied across the certified farm area, even if some practices vary by field.

Spatial Scope

Farm level and group-of-farms level, implemented globally across multiple crops, regions, and production systems.

System Scope

Whole-farm certification framework embedded in supply chains, covering environmental management, social safeguards, and farm governance..

PROGRAM
Regenerative Agriculture Standard

MRV PROVIDER
Rainforest Alliance

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>The Rainforest Alliance standard is explicitly designed for global applicability across crops, climates and socio-economic contexts. Contextual adaptation is addressed through a risk-based approach, allowing requirements to be tailored at country, crop and supply-chain level. Farms develop management plans that reflect local conditions, and some requirements are applied conditionally based on risk assessments.</p> <p>However, the core evaluation structure relies on globally defined requirements and performance levels. Public documentation does not demonstrate regionally calibrated regenerative thresholds or place-based outcome benchmarks embedded in the assessment logic. Adaptation therefore occurs primarily through risk screening and implementation flexibility rather than through a context-calibrated measurement framework</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>The standard explicitly integrates environmental, social and economic dimensions. Environmental requirements cover soil health, biodiversity, pesticide reduction, water management and climate resilience. Social indicators are well developed and include labour rights, wages, health and safety, and grievance mechanisms. Economic dimensions are addressed through requirements related to productivity, market access and farm management planning.</p> <p>However, while these domains are comprehensively covered as requirements, they are not measured as quantified, interconnected outcomes. Ecological indicators are largely practice- and compliance-based rather than outcome-based, and economic performance (e.g. income, profitability, resilience) is not systematically measured. Integration is therefore strong at the level of safeguards and minimum standards, but partial at the level of outcome-based regenerative measurement.</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>Certification and audit costs are borne by farmers and producer groups and vary by context, with no standardised or publicly disclosed cost structure. In addition, farmers must meet extensive documentation, record-keeping, and audit preparation requirements across environmental, social, and management domains. While group certification and risk-based audits can reduce per-farm audit frequency, public materials do not quantify farmer time commitments or administrative burden. Independent reporting and farmer feedback indicate that costs and paperwork can be significant, particularly for smallholders, supporting an intermediate assessment.</p>	
AGRONOMIC ENABLING VALUE	<p>The RAS provides technical guides, e-learning modules, and field training through Rainforest Alliance's Knowledge Hub. These resources help farmers implement regenerative practices, such as diversified rotations, cover crops, and reduced chemical inputs.</p> <p>The system remains primarily compliance-based. While the RAS references measurable indicators, no longitudinal datasets or peer-reviewed evaluations have been released showing improvement in yields, soil function, or ecosystem services.</p> <p>Agronomic support is accessible through RA's training programs but lacks a two-way feedback mechanism enabling adaptive management at farm level.</p>	

PROGRAM

Regenerative Farming Standard

FOODCHAIN ID®

MRV PROVIDER

FoodChain ID

OVERVIEW

FoodChain ID's Regenerative Farming Standard (RGN) is a global, voluntary certification for regenerative agriculture applicable to conventional or organic farms. It is promoted as an outcome-based framework aimed at improving soil health, biodiversity and climate resilience, and is applied at whole-farm level rather than only to individual certified fields. The standard uses tiered performance levels to support continuous improvement, with field audits verifying practices, outcomes and traceability. RGN is currently used in supply chains such as Barilla's Carta del Mulino, where it underpins regenerative wheat sourcing and is combined with other sustainability schemes (e.g. ISCC PLUS).

INFORMATION ASSESSED

FoodChain ID page: Regenerative Farming Standard (RGN)

FoodChain ID press release on Regenerative Agriculture Standard (global standard launch)

Barilla Carta del Mulino 2026 & Sustainability-Linked Financing Framework (description of RGN as applied in wheat supply chains) - Carbon Cycle Institute materials

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological:

- Soil health / fertility: improvement of soil structure and organic matter
- Soil cover / presence of vegetative cover: maintaining living or dead cover to reduce erosion and drought risk.
- Water management: management of water use, water infiltration, and runoff; resilience against drought and erosion.
- Nutrient balance / input optimisation: reduction of synthetic input dependence; optimisation of nutrient cycles.
- Carbon retention / sequestration: optimisation of carbon retention in soil.
- Biodiversity: restoration of ecological zones, habitat conservation, promotion of beneficial species (pollinators, soil organisms).
- Waste management: management of farm waste streams (mentioned as monitored aspect).
- Livestock presence and management: where relevant, presence of livestock and its integration into farm management.

SCOPE

Field Scope

- RGN is described (in Barilla's implementation) as farm-wide, applying to all fields on the farm, not only those producing certified "sustainable wheat."
- Within the farm, monitored aspects include: soil cover, water management, techniques used, waste management, presence and handling of livestock, biodiversity features, and nutrient/carbon management.
- Inspections include field audits to verify practices, outcomes and traceability.

Farm Scope

- Certification applies to the entire operation (all enterprises, land). The standard covers the entire agricultural enterprise (all fields and relevant livestock) where it is applied.
- Focused on farm management systems that aim to regenerate soil, biodiversity and resilience across the whole business, not just individual parcels.
- Can be used for individual producers or groups, with chain-of-custody modules for mills, traders and processors in supply chains (e.g. Carta del Mulino).

Spatial Scope

Described as independent, globally applicable, voluntary and suitable "for any type of farming, whether conventional or organic" and for food, fibre and other agricultural products.

PROGRAM
Regenerative Farming Standard

MRV PROVIDER
FoodChain ID

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>RGN is presented as globally applicable and intended to support diverse geographies and production systems through a tiered approach. This indicates an intent to accommodate different farming contexts. However, public documentation does not provide evidence of verified regional calibration of metrics or place-based thresholds that adjust evaluation to specific soils, climates, farm structures, or local socio-economic conditions. The system's structure appears largely uniform, with adaptation occurring mainly through progressive levels and implementation choices rather than through a regionally calibrated measurement framework.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>Public descriptions frame RGN as regenerative agriculture certification incorporating environmental elements, with emphasis on soil health and land management, and references to biodiversity and climate resilience in communications about certified products. However, public materials do not set out a quantified indicator set across ecological, social and economic outcomes, nor do they document a measurement approach that links ecological performance to livelihoods or economic resilience. Social and economic outcomes are not clearly specified as measured results in the publicly available descriptions reviewed. As a result, the system is evidenced as environmentally oriented, with social/economic dimensions either absent from the public indicator description or treated as external to core outcome measurement.</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>RGN offers individual and group certification options and is positioned as scalable for supply programs, which can support broader participation. The inclusion of group certification may reduce audit and administrative burden per farmer, depending on implementation. At the same time, public documentation does not disclose typical certification fees, audit intensity, data/reporting requirements, or how costs and administrative effort vary by farm size and producer type. Without transparent cost and burden information, it is not possible to confirm affordability or low bureaucracy for small-scale and diverse producer</p>	
AGRONOMIC ENABLING VALUE	<p>The tiered design (from "under conversion" to more advanced levels) suggests a pathway for continuous improvement. However, public materials primarily describe certification structure (levels, eligibility, certification categories) rather than documenting a consistent farmer-facing feedback loop that returns context-rich diagnostic insights for farm management and innovation. Evidence of decision-support outputs, farm-specific learning feedback, or structured advisory integration is limited in the publicly available descriptions reviewed. As a result, the system is evidenced primarily as a certification pathway rather than an agronomic decision-support tool.</p>	

PROGRAM

Regenerative Organic Certified (ROC)

MRV PROVIDER

Regenerative Organic Alliance

OVERVIEW

Regenerative Organic Certified is a certification program that builds on organic certification as a prerequisite and adds additional requirements across soil health, animal welfare, and social fairness. The framework uses tiered certification levels and integrates practice requirements with outcome-related indicators. Verification leverages existing organic inspection systems alongside additional audits. ROC is designed to provide a unified label linking ecological and social dimensions within organic supply chains.

INFORMATION ASSESSED

Regenerative Organic Certified® Framework

Regenerative Agriculture Certification Label Comparison Chart

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological

- Soil organic matter increase (lab-tested at certification and every three years)
- Soil health in-field tests (structure, aggregation, biological activity)
- Continuous soil cover (% land covered; seasonal coverage requirements by level)
- Crop rotation diversity (minimum crop numbers increasing from Bronze to Gold)
- Tillage intensity and reduction plans (including no-till at Gold where feasible)
- Cover crop use (including nitrogen-fixing species)
- Compost and manure management (self-sufficiency targets; contamination controls)
- Synthetic input prohibitions (synthetic fertilisers, GMOs, most pesticides)
- Water protection and riparian restoration
- Biodiversity practices (pollinator habitats, agroforestry, riparian buffers, silvopasture)
- Deforestation and land conversion prohibition
- Greenhouse gas emissions and sequestration (modelled using tools such as COMET-Farm or Cool Farm Tool)

Social

- Compliance with labour laws and ILO conventions
- Prohibition of forced and child labour
- Working hours compliance
- Health and safety systems and incident tracking
- Worker training and rights awareness
- Grievance mechanisms and worker voice
- Freedom of association and collective bargaining
- Equal pay for equal work
- Living wage commitment (mandatory at Gold)
- Fair contracts and timely wage payments

Economic

- Certification level achieved (Bronze / Silver / Gold)
- Percentage of land or revenue certified
- Access to ROC-labelled markets and price premiums
- Reduced input dependency through organic and regenerative practices
- Long-term economic stability through tiered continuous improvement model

SCOPE

Field scope

- Field-level soil testing, in-field soil health assessments, tillage practices, crop rotations, cover cropping, nutrient and pest management, and biodiversity practices.

Farm scope

- Aggregation of field practices across the operation
- Whole-farm soil health planning (Regenerative Organic System Plan)
- Farm-wide labour, animal welfare, water, waste, and emissions compliance
- Percentage of farm area or revenue meeting certification requirements

Spatial scope

- Individual farms and ranches globally
- No landscape-scale aggregation; site-specific certification with allowance for local adaptation

System scope

- Primary agricultural production (crops and livestock)
- Transportation, slaughter, and certain processing facilities for products carrying ROC claims
- Third-party certification and consumer-facing labelling
- Integration with organic supply chains and ethical sourcing systems

PROGRAM	MRV PROVIDER
Regenerative Organic Certified (ROC)	Regenerative Organic Alliance

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>The Regenerative Organic Certified (ROC) framework embeds contextual adaptation through its tiered certification levels (Bronze, Silver, Gold) and regional equivalency options under the USDA National Organic Program. It allows flexibility for international operators via recognized organic equivalents and mandates locally appropriate compliance with laws on land, labour, and animal welfare. Continuous review by expert committees ensures the framework evolves with agronomic and climatic variation.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>ROC explicitly defines regeneration as a multi-dimensional process and requires compliance across three integrated pillars: soil health and land management, animal welfare (where applicable), and social fairness. Environmental indicators include soil health practices and outcomes aligned with organic and regenerative principles; social requirements include labour rights, fair treatment, and protections aligned with international standards; economic dimensions are addressed through minimum price and premium mechanisms, particularly for smallholders. While not all outcomes are quantified with numeric performance indicators, the system structurally integrates ecological, social, and economic dimensions and treats them as non-substitutable components of certification.</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>ROC builds on existing organic certification systems, which reduces duplication and leverages established audit infrastructure. This supports credibility and market recognition. However, the combined requirements of organic certification plus additional ROC audits, documentation, and compliance introduce significant administrative and financial burden, particularly for small and medium-scale producers. Public materials acknowledge the need for group certification and staged participation, but costs and effort remain substantial. The system is fit for high-integrity certification and premium markets, but not clearly accessible or low-burden for broad participation.</p>	
AGRONOMIC ENABLING VALUE	<p>ROC sets clear regenerative expectations and requires continuous improvement, but it operates primarily as a standards-based certification rather than a learning or decision-support system. Guidance focuses on compliance with defined practices and outcomes, and feedback to farmers is largely framed through audit findings rather than context-rich agronomic diagnostics. While the standard encourages better management and long-term stewardship, it does not systematically provide farm-specific feedback loops designed to support adaptive decision-making or innovation beyond meeting certification requirements.</p>	

PROGRAM

The Regenerative Verified™ (RV) Regeneratively Grown

MRV PROVIDER

Soil Regen

OVERVIEW

Soil Regen's verification system combines laboratory-based soil testing with management verification to determine eligibility for regenerative claims and product labelling. The process begins with a baseline soil assessment using a multi-metric soil health test, followed by periodic re-testing to assess trends. Farms must also document the application of regenerative principles in management. Certification is renewed annually and is designed to support traceability, nutrient management insights, and market communication.

INFORMATION ASSESSED

RV and RG Instructions - Input for EARA

Ag Soil Regen website (program description, events, verification process)

Regen Ag Lab documentation (Haney Test background)

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological (measured via practice-based scoring + some outcomes)

- Cover cropping (presence, duration)
- Crop rotation diversity
- Reduced tillage / no-till
- Organic matter building practices
- Grazing integration (where relevant)
- Synthetic fertiliser reduction
- Synthetic pesticide reduction / elimination
- Prohibition or limitation of certain inputs
- Habitat presence
- Biological diversity practices (proxy-based)

Measured biophysical indicators (via Haney-based Regenerative Certified™ test)

- Soil & land management
- Cover cropping (presence, duration)
- Crop rotation diversity
- Reduced tillage / no-till
- Organic matter building practices
- Grazing integration (where relevant)
- Inputs
- Synthetic fertiliser reduction
- Synthetic pesticide reduction / elimination
- Prohibition or limitation of certain inputs
- Biodiversity & ecosystem function
- Habitat presence
- Biological diversity practices (proxy-based)

Social (requirements-based, not outcome-quantified)

- Farmer education and participation
- Commitment to regenerative principles
- Transparency and traceability requirements

SCOPE

Field Scope

- Individual fields or management zones (each ≤100 acres).
- Applicable to cropland and livestock operations
- Sampling depths: 0–6" and 6–12"
- Field delineation required (SHP/KML)

Farm Scope

- Any producer who plants a seed or raises livestock
- Mixed, conventional, and regenerative farms can participate
- Verification is crop- or product-specific per year

Spatial Scope

- Operates primarily in the United States.

System Scope

- Regeneratively Certified™ = laboratory soil test result
- Regeneratively Verified™ / Regeneratively Grown™ = soil + management verification + traceability
- Applies to food system outputs: grains, beef, pork, eggs, milk, etc.

PROGRAM	MRV PROVIDER
The Regenerative Verified™ (RV) Regeneratively Grown	Soil Regen

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>The RV/RG system is fundamentally contextualised to field, climate, and management, not to broad regional averages. Soil Regen emphasises that the Regenerative Certified™ test compares “your soil to your management in your climate,” eliminating geographic variability associated with standard soil-carbon schemes. This means results reflect intrinsic soil properties and local management impacts rather than comparing soils across unrelated ecosystems. Sampling design is also context-specific: management zones are delineated based on soil type, slope, and elevation, with composite samples taken per zone up to 100 acres. This ensures representativeness and avoids one-size-fits-all sampling. Sample depths (0–6” and 6–12”) recognise vertical stratification of soil function. Management verification requires producers to demonstrate at least one regenerative principle, with examples such as soil cover, reduced disturbance, diversity, and livestock integration. These principles explicitly allow adaptation to climate, personal experience, and individual situations. The system accommodates both regenerative and conventional farmers, with recommendations tailored to improve scores when fields do not pass.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>The RV/RG framework is built primarily around ecological soil-function metrics, using the Haney test and additional calculations to determine the Regenerative Certified™ score. This includes biological activity, nutrient availability, organic carbon, microbial respiration, and soil health indicators. These are robust and multi-dimensional but remain confined to the soil-ecology domain. The system does incorporate elements of regenerative principles, soil cover, reduced disturbance, diversity, and livestock integration, which connect ecological and agronomic outcomes. Management is verified through documentation, photos, and sometimes site visits, offering a holistic but still practice-based layer. However, the program does not directly measure social outcomes (labour, well-being, community impact or systematic economic outcomes (profitability, risk reduction). While nutrient recommendations may improve economic performance and the label may increase market value, these impacts are not monitored as outcomes. Traceability and identity preservation strengthen market integrity but do not encompass full food-system economic dynamics. Livestock and grain verification add system breadth but still rely on soil and management indicators rather than multi-pillar MRV.</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>The Soil Regen system is designed to provide rigorous verification, but its structure introduces notable costs and administrative requirements. Producers must contract with Soil Regen, obtain field delineations, and rely on a third-party sampler, which adds cost and coordination. Sampling requires 10 cores per management zone, two depths, careful handling, and rapid shipment. While fees are not fully listed in the provided materials, data procurement and sampling support are explicitly said to vary and may add cost barriers. Additional fees may apply if Soil Regen assists with delineations. Verification requires documentation evidence, year-by-year recertification, and yield validation (scale tickets, APH, etc.). For livestock, full traceability and head counts add administrative complexity. Although the system provides value, nutrient recommendations, soil insights, traceability, market differentiation, the verification burden may be significant for smaller or diversified farms. The framework is fit for purpose (soil-based regenerative verification) but not low-burden compared with digital or model-based systems.</p>	
AGRONOMIC ENABLING VALUE	<p>The Soil Regen RV/RG system provides one of the most agronomically actionable feedback loops among regenerative certification schemes. The Haney-test-based Regenerative Certified™ analysis yields detailed soil-function information, including nutrient availability, biological activity, soil respiration, and organic carbon dynamics. These results are returned to producers with nutrient recommendations “down to a foot,” enabling targeted fertiliser optimisation and potential cost savings. The system allows farmers to understand how soil function has changed relative to their baseline, supporting adaptive management. Even if a producer does not pass verification, they receive recommendations for how to improve soil performance. The focus on soil health rather than carbon accounting provides more directly usable agronomic information. Management verification reinforces agronomic learning by evaluating producer practices against regenerative principles. This encourages diversification, cover, reduced disturbance, and livestock integration, each of which has direct effects on soil structure, nutrient cycling, and productivity. The certification is crop- or product-specific per year, allowing seasonal learning and practice adjustment.</p>	

PROGRAM

6-3-4 Verification Standard

MRV PROVIDER

Regenified

OVERVIEW

The Regenified framework structures regenerative assessment around four ecosystem processes, supported by a tiered verification system. Farms identify local resource concerns and implement context-appropriate practices aligned with these processes. Verification includes documentation review, field assessment, and periodic reassessment to track progress over time. The system is designed to be applicable across diverse production systems while maintaining a consistent structure for regenerative claims.

INFORMATION ASSESSED

Regenified response to EARA Benchmarking
Regenified 6-3-4 Verification standard V2 (2025)

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological indicators

- Dry aggregate stability (Jornada test)
- Infiltration rate (single ring infiltrometer)
- Absence of visible erosion, runoff, ponding
- Soil water holding capacity
- Wet aggregate stability
- Soil respiration (Haney CO₂)
- Haney Soil Health Score
- Soil organic carbon (LOI and SOC)
- PLFA microbial biomass, AMF, fungal:bacterial ratio
- Ground cover percentage
- Living root days
- Plant species richness
- Beneficial insects, wildlife, birds, invertebrates

Economic indicators (indirect)

- Reduction in fuel use per acre
- Reduction in electricity use per acre
- Proportion of regeneratively produced feed inputs

Social indicators

- Participation in regenerative education
- Succession planning

SCOPE

Field Scope

- Unit: individual field or tract
- Measures soil, vegetation, livestock impacts at field level using scoring and lab tests

Farm Scope

- Covers the entire farm or ranch system submitted for verification
- Requires whole-farm regenerative planning and tier progression

Spatial Scope

- Operates at field, farm, and regional ecological context
- Applies across cropland, grazing land, pasture, rangeland, orchards

System Scope

- Includes soil, crops, livestock, water, energy, biodiversity
- Covers management practices, field evaluation, lab testing, verification and certification processes

PROGRAM
6-3-4 Verification Standard

MRV PROVIDER
Regenified

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>Context is a mandatory and operationalised component of the Regenified system. Farms are required to explicitly document their ecological setting, resource concerns, growing season characteristics, and management constraints, and to align production cycles with local conditions. Scoring thresholds for ground cover, living roots, and perennial canopy are differentiated by rainfall zones and brittleness, demonstrating systematic regional calibration. The tiered structure allows farms to progress over time while accounting for shocks such as drought or flooding, with formal mechanisms to adjust expectations when external conditions constrain outcomes. This embeds adaptation to place and time within the verification logic rather than relying solely on local interpretation.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>The framework explicitly recognises regeneration as a multi-dimensional process and includes ecological, social and economic dimensions within its structure. Ecological outcomes are quantified in detail and tracked over time, forming the core of the verification system. Social and economic aspects are present through requirements related to stewardship, participation, input use and operational practices. However, these social and economic dimensions are not measured through quantified outcome indicators, nor are they systematically linked to ecological performance to demonstrate co-benefits or trade-offs.</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>The verification system is designed to balance rigour with accessibility. Progress is recognised proportionally through a field-level numerator/denominator scoring approach, allowing partial implementation without penalising transitional farms. Soil testing is required at baseline and then every three years rather than annually, reducing recurring costs while maintaining outcome credibility. Tier advancement timelines encourage progress without imposing continuous high-frequency monitoring. Grouping fields by management and allowing substitutions for locally unavailable tests further reduces barriers. These design choices support participation by small and diverse producers while remaining credible for supply-chain and market use.</p>	
AGRONOMIC ENABLING VALUE	<p>The standard provides measurable and actionable feedback that directly informs farm management. Indicators such as living root days, ground cover, and species diversity guide adaptive practices. Farmers receive explicit targets for tillage, pesticide use, and crop rotation, facilitating evidence-based decision-making. Continuous verification fosters learning, resilience, and innovation. The 6-3-4 framework transforms certification into a management tool that builds biological health, closes input loops, and enhances long-term productivity.</p>	

PROGRAM

Standard Criteria Program

MRV PROVIDER

Regenagri (Control Union)

OVERVIEW

Regenagri is a global regenerative agriculture framework combining farm standards, digital data collection, assurance services, and chain-of-custody certification. It focuses on soil health, biodiversity, GHG emissions, water use, and labour/H&S, with a scoring system requiring $\geq 65\%$ for certification. The program includes contextualized assessments, continuous improvement, carbon insetting, and third-party audits by Control Union. Outcome data, particularly for carbon, GHG, and water, is quantified and reported annually, supported by remote sensing and soil sampling. Regenagri operates across 230,000+ farms and 1.46 million hectares globally, spanning cotton, coffee, grains, nuts, fruits, and livestock systems.

INFORMATION ASSESSED

regenagri Standard Criteria v3.2 (July 2024)

regenagri Impact Report 2023

regenagri Farm Program documentation - Input for EARA

Public regenagri program and methodology descriptions

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological

- Soil organic matter / soil organic carbon
- Soil cover and residue management
- Tillage intensity and conservation tillage
- Crop rotation diversity
- Cover crop adoption
- Synthetic fertiliser use and reduction
- Organic and nature-based fertiliser use
- Synthetic pesticide use and reduction
- Integrated Pest Management adoption
- Irrigation practices and water use (litres/ha)
- Water quality and pollution prevention measures
- Biodiversity infrastructure (hedgerows, buffers, habitats, conservation areas)
- Grassland botanical diversity
- Livestock integration and rotational grazing practices
- Greenhouse gas emissions (CO_2e)
- Soil carbon sequestration (t C/ha; CO_2e equivalents)
- Renewable and on-farm energy use
- Deforestation risk and protection of high conservation value land

Social

- Compliance-related, some participation mapping

Economic (indirect)

- Yield records (required for groups)
- Input reduction proxies (fertilisers, pesticides)
- Practice diversification linked to resilience

SCOPE

Field scope

- Field-level soil, crop, nutrient, pesticide, irrigation, biodiversity, and grazing indicators.

Farm scope

- Aggregated regenerative score, livestock management, labour standards, water and energy management, and emissions accounting.

Spatial scope

- Individual farms, farm groups, cooperatives, and regional aggregation across multiple countries.

System scope

- Primary production, group certification, supply-chain traceability, processing, brands, carbon markets, and regulatory compliance.

PROGRAM	MRV PROVIDER
Standard Criteria Program	Regenagri (Control Union)

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>The regenagri system is explicitly designed to adapt assessments to local context. Evaluation is carried out at field and farm level, with calibration based on soil type, climate, farming system (arable, livestock, perennial), and operational constraints. Scoring thresholds are adjusted through contextual weighting, and several practices explicitly acknowledge differences in feasibility and impact depending on climate and soil. This avoids a one-size-fits-all approach and embeds contextual differentiation within the assessment logic.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>The framework captures a wide range of ecological outcomes through quantified indicators such as soil organic matter, soil carbon, fertilizer and pesticide reduction, biodiversity practices, water use, and emissions. Social aspects are included through mandatory labour, health, safety, and community-related requirements, but these are primarily compliance-based rather than outcome-based. Economic dimensions are addressed indirectly through input reduction, yield stability, and diversification practices, without explicit measurement of farm-level profitability or economic resilience. Integration is therefore present but uneven across system dimensions.</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>The digital platform standardises data capture, reporting, and verification while reducing duplication and cost. Third-party certification ensures credibility without unnecessary administrative burden. Group certification through internal control systems enhances accessibility for smaller producers, and risk-based verification aligns resource intensity with project complexity. The system balances rigour with practicality, making it proportionate and scalable across farm sizes and production contexts. Efficiency and inclusivity are well aligned with its purpose as a certification tool for continuous improvement.</p>	
AGRONOMIC ENABLING VALUE	<p>Regenagri's emphasis on outcomes supports farmer-led innovation and adaptive management. The framework provides detailed audit feedback, soil and water metrics, and year-on-year benchmarking. Because it evaluates results rather than enforcing fixed practices, farmers can experiment with locally suited regenerative methods. This flexibility encourages innovation while maintaining accountability through measurable outcomes. The system enables continuous learning, enhances biological health, and improves productivity by integrating agronomic feedback loops directly into certification and monitoring processes.</p>	

PROGRAM

Regenerative Agriculture Program

MRV PROVIDER

Unilever

OVERVIEW

Unilever's regenerative agriculture program is a supply-chain initiative guided by its Regenerative Agriculture Principles and supporting implementation guidance. It addresses soils, water, climate, biodiversity, and livelihoods and is designed to be applied across diverse crops, regions, and farm types. The approach emphasises establishing baselines, tracking progress through indicators and KPIs, and supporting implementation through partnerships and projects. Public reporting focuses on aggregated progress, such as hectares under regenerative practices, rather than a single standardised MRV score.

INFORMATION ASSESSED

Unilever - Input for EARA

Unilever Regenerative Agriculture Principles with Implementation Guides (2021)

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological

- Soil organic matter / soil organic carbon (%)
- Soil microbial biomass and diversity
- Earthworm abundance
- % of year with full soil cover
- Erosion risk indicators
- Nitrate levels in drainage or tile water
- Turbidity / sediment load in adjacent water bodies
- Water footprint of irrigated crops
- Nitrogen use efficiency
- Crop carbon footprint (CO₂e)
- Fossil fuel use on farm
- Area and condition of high-carbon habitats (forests, wetlands, peatlands)
- Crop and landscape biodiversity (species counts; presence of hedges, buffers, corridors)

Economic

- Farm profitability (baseline and monitored as part of system assessment)
- Nitrogen and input efficiency improvements
- Yield stability relative to resource use
- Access to markets through Unilever supply chains
- Corporate investments in regenerative agriculture programs (hectares covered; program scale)

SCOPE

Field scope

- Soil properties (soil organic matter, microbial biomass, earthworms, compaction)
- Crop and soil management practices (soil cover, tillage intensity, nutrient and pesticide use)
- On-field biodiversity indicators (crop diversity, beneficial species presence)
- Field-level water and climate indicators (nitrogen losses, water footprint, crop carbon footprint)

Farm scope

- Aggregated soil, water, climate, and biodiversity performance across all fields
- Nitrogen use efficiency and fossil fuel use at farm scale
- Farm-level carbon storage and habitat protection
- Livelihood indicators linked to participating farms (training, organisation, income benchmarks)

Spatial scope

- Landscape elements within and around farms (riparian buffers, hedgerows, high-carbon habitats, wildlife corridors)
- Watershed-level water management considerations
- Regional adaptation across diverse geographies, crops, and production systems

System scope

- Primary production across arable, perennial, and livestock supply chains
- Supplier and smallholder engagement through implementation partners
- Embedded within corporate sourcing and sustainability programs
- No independent certification or consumer-facing labelling

PROGRAM
Regenerative Agriculture Program

MRV PROVIDER
Unilever

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>The program recognises that regenerative pathways differ across soils, climates, farming systems and socio-economic contexts, and it requires an initial baseline understanding of local conditions before implementation. Guidance materials explicitly state that practices and priorities should be adapted to local realities, and delivery is mediated through regional partners. However, the underlying framework, indicators and expectations are globally defined, and public documentation does not demonstrate the use of region-specific thresholds or locally calibrated evaluation benchmarks embedded in the system. Adaptation therefore occurs mainly through implementation choices rather than through differentiated assessment logic.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>The program is explicitly multi-pillar in ambition, covering soil health, water, climate, biodiversity and livelihoods within a single framework. Environmental indicators are comparatively well articulated, particularly around soil, climate and land-use practices. Social aspects are present through a livelihoods pillar that tracks participation in training, farmer organisation and empowerment initiatives, while economic performance is addressed indirectly through productivity and input-efficiency considerations. However, social and economic outcomes are not quantified with the same rigor as environmental ones, nor are interconnections between ecological performance and livelihoods or economic resilience systematically measured. As a result, integration exists conceptually, but measurement depth remains uneven across system dimensions.</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>The program is designed to operate at global scale by prioritising guidance, partner-led implementation and the use of existing data sources, which reduces barriers to entry and supports broad participation. At the same time, public materials provide limited transparency on reporting burden, verification effort, costs, or how requirements are adjusted for different farm types, including small and diverse producers. While the approach avoids highly bureaucratic MRV, the lack of clarity on effort, cost and verification makes it difficult to conclude that the system is consistently right-sized and equitable across contexts.</p>	
AGRONOMIC ENABLING VALUE	<p>Unilever's program places strong emphasis on agronomic support and continuous improvement. Implementation guides provide practical management options across soil, water, climate and biodiversity, encourage baseline assessment, and promote ongoing monitoring to inform adjustments. Delivery through partners and advisors helps translate data and indicators into actionable guidance for farmers. While feedback mechanisms vary by implementation, the system is designed so that data collection and monitoring are linked to learning, innovation and adaptive management rather than pass/fail compliance</p>	

Our commitment to optimal objectivity, the truth and democracy are deeply embedded in our understanding and principles of Regenerating Agricultures. We hence clearly demarcate these three MRVs, which we assessed by the same methodology as those above. However, of the assessed MRVs, these are the three in which EARA farmer members are directly involved in some form or another.

Hence we as EARA, consider it our duty to show them separately. Obviously, the farmers assessing these schemes through our methodology, were not the ones who are actively involved in the MRVs. Nevertheless we wanted to show them clearly marked as those in which we, organically, have a significantly higher potential bias, than in the others.

PROGRAM

Regeneration Dialogue Approved Regenerating

MRV PROVIDER

AgriPurpose

OVERVIEW

Approved Regenerating is AgriPurpose's whole-farm regenerative verification system. It is based on the RegenerationDialogue, a process that combines satellite data, field-level soil sampling, regional benchmarking, historical trend analysis, and an annual structured interview with the farmer. The system evaluates biomass productivity, soil cover, soil health indicators, input efficiency, and field-level performance variability. Outputs include a consolidated set of improvement areas and an annual regeneration assessment. Soil sampling occurs once per crop rotation or every four years, with targeted sampling on underperforming fields. The certification operates globally through local consultants and emphasizes minimal reporting burden.

INFORMATION ASSESSED

Approved Regenerating - Input for EARA

RegenerationDialogue – Technical Document (2025)

AgriCircle descriptions of Approved Regenerating certification

AgriCircle/AgriPurpose resources describing satellite analysis, soil sampling, benchmarking

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological:

- Biomass productivity (farm-level and field-level trends)
- Soil cover (long-term soil cover development)
- Soil organic carbon (SOC) content and SOC trends (via precision soil sampling)
- Soil pH, clay %, macronutrients (P, K, Mg), micronutrients, CAC (cation exchange capacity)
- Field-level variability in soil parameters (10×10 m pixel soil maps)
- Water cycle proxies (soil moisture, biomass performance under climate events)
- Input use and input efficiency (fertilizer, pesticides, fuel, water)
- Yield and biomass performance consistency in extreme weather years (relative to regional peers)
-

Social / Economic:

- Yield vs. input efficiency (economic proxy)
- Farm import-export balance of nutrients and goods (economic/ environmental linkage)
- Consultant-farmer engagement and local networks (qualitative social dimension)
- Regional comparison includes socio-economic zones (non-quantified)

SCOPE

Field Scope

- Field-level productivity, soil cover and soil sampling
- Field clustering to identify underperforming vs outperforming areas

Farm Scope

- Whole-farm analysis through aggregation of fields, yields and inputs
- Annual repetition of RegenerationDialogue

Spatial Scope

- Farm compared to automatically generated local peer region
- Designed to work "anywhere on Earth," relying on local benchmarking

System Scope

- Outcome-oriented advisory + continuous-improvement certification
- "Approved Regenerating" positioned as dynamic certification, not static label
- Not a carbon-only MRV, but capable of generating SOC maps usable for carbon markets

PROGRAM
Approved Regeneration & Regeneration Dialogue
MRV PROVIDER
AgriPurpose
EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>The RegenerationDialogue uses automatically generated regional peer groups derived from satellite data to compare each farm's biomass and soil-cover trends to neighbouring farms under similar pedoclimatic conditions. Farmers are asked about deviations tied to specific years, weather extremes, soil characteristics, or management actions. Soil sampling targets fields that consistently underperform in the regional comparison, and the findings are interpreted relative to local soil patterns and nutrient status. Interviews are explicitly designed to incorporate the farmer's observations, local knowledge, and crop-specific issues.</p> <p>The process includes local consultants familiar with regional practices and conditions, which supports adaptation to local agronomic and socio-economic contexts. No universal practice list is applied; improvements are identified relative to the farm's own baselines and peer-region context.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>Agripurpose quantifies multiple ecological outcomes (SOC trends, soil cover, biomass productivity) and links them to efficiency indicators derived from farm accounting (inputs vs outputs). These elements are integrated into a single system logic and used to guide improvement. Agripurpose currently does not define or track further ecological indicators such as AMR, ecological corridors or social outcome indicators (e.g. labour conditions, wellbeing), and economic outcomes are represented indirectly through efficiency rather than explicit profitability or income metrics.</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>Approved Regenerating of AgriPurpose states that reporting requirements are designed to be minimal, with an estimated annual burden of approximately only 3 hours. Required inputs include digital field boundaries, aggregated accounting data, and soil sampling once per rotation or every four years. Precision soil sampling is applied selectively to a subset of fields identified as underperforming.</p> <p>The RegenerationDialogue interview takes 1-2 hours, and most data is collected automatically or via bookkeeping extracts. No specialized modeling platforms or extensive continuous monitoring are required beyond satellite-derived data and standard soil tests.</p>	
AGRONOMIC ENABLING VALUE	<p>The RegenerationDialogue generates field-level analyses of biomass trends, soil-cover trends, and soil nutrient and SOC patterns. Interviews identify management actions linked to positive or negative deviations from trend lines. Soil sampling provides targeted field-specific information for nutrient adjustments, pH correction, SOC improvement, or organic matter strategies.</p> <p>The RegenerationDialogue systematically links remote sensing, soil data, yield and input records with farmer experience to help identify the most impactful next steps for each farm. Insights are field-specific and prioritised, avoiding generic recommendations. Annual repetition creates a feedback loop between management changes and observed outcomes, with soil sampling repeated once per rotation.</p>	

PROGRAM

Ecological Outcome Verification / Land to Market

MRV PROVIDER

Savory Institute

OVERVIEW

Ecological Outcome Verification (EOV) is an outcome-based monitoring framework designed to assess changes in ecosystem function on agricultural land. It relies on repeated field monitoring using locally calibrated reference sites to establish ecological baselines for specific soils, climates, and land uses. Indicators focus primarily on soil health, biodiversity, and ecosystem processes, with assessments conducted over time to track trends rather than single-point results. EOV is implemented through regional hubs that coordinate data collection, verification, and farmer engagement. The framework is commonly used within the Land to Market program to support claims related to ecological outcomes.

INFORMATION ASSESSED

Savory Institute input to EARA
EOV Manual updated 2025

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological

- Ground cover
- Plant diversity (species and age)
- Plant health
- Biodiversity / biological activity
- Water cycle and infiltration

SCOPE

Field Scope

- Field level (30m radius) plant diversity, biodiversity, ground cover, soil health, mineral cycle, water cycle, and energy flow.

Farm Scope

- Mapping of different strata (i.e., forests, pastures, cropland) and the aggregation of field results to farm level. Verification cannot be made without all aspects of the farm involved in animal production being approved.

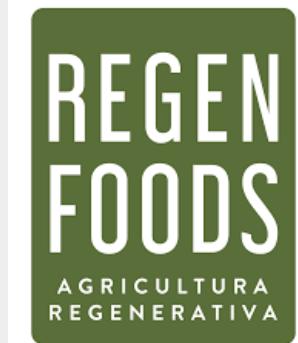
Spatial Scope

- Global verification standard with a homogenous checklist.
- Standardised and benchmarked by bioregions within a certain zone. Each firm will be marked against a benchmark farm within the same bioregion to ensure homogeneity among results.

System Scope

- Verification of animal production at the farm level. Animals may be grazed in cropland following harvest, in which case this area would be verified, however there is no 'premium' for non-animal products.

PROGRAM
Ecological Outcome Verification / Land to Market
MRV PROVIDER
Savory Institute
EARA REGENERATIVE INTEGRITY CRITERIA


CONTEXT-SPECIFICITY	<p>Ecological Outcome Verification (EOV) is an outcome-based monitoring framework designed to assess changes in ecosystem function on agricultural land. It relies on repeated field monitoring using locally calibrated reference sites to establish ecological baselines for specific soils, climates, and land uses. Indicators focus primarily on soil health, biodiversity, and ecosystem processes, with assessments conducted over time to track trends rather than single-point results. EOV is implemented through regional hubs that coordinate data collection, verification, and farmer engagement. The framework is commonly used within the Land to Market program to support claims related to ecological outcomes.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>The Ecological Outcome Verification (EOV) protocol is built on contextual calibration. Each assessment relies on local ecological reference sites and region-specific state-and-transition models, ensuring that outcomes are measured relative to local baselines rather than fixed global standards. Sampling intensity, species lists, and benchmark conditions are determined by local Savory Hubs familiar with regional ecology and management systems. This allows adaptation to diverse climates, soils, and production systems. The approach also evolves over time through short- and long-term monitoring cycles, making it highly responsive to place and change.</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>Savory captures regeneration as a system-wide process, although EOV is primarily concerned with the ecological dimension of regeneration. It evaluates indicators such as biodiversity, water infiltration, and soil surface condition, while implementation through local hubs promotes social cohesion and capacity building. Both social and economic outcomes are implicit rather than directly measured, and can be informally tracked during the in-person verification process, however this does not influence the rating itself; the framework prioritises ecosystem function improvement, with community-led learning linking ecological health with social resilience.</p>	
AGRONOMIC ENABLING VALUE	<p>EOV provides immediate, outcome-based feedback to farmers through visual and quantitative ecosystem indicators. Land managers gain insight into soil cover, plant diversity, and water dynamics, allowing them to make adaptive, evidence-based management decisions. The feedback cycle fosters learning and innovation rather than compliance, strengthening ecological literacy and long-term productivity. Continuous engagement through Savory Hubs supports practical interpretation of results, helping farmers close input loops, enhance soil function, and improve biological resilience through informed, outcome-oriented management.</p>	

PROGRAM

Regen Foods

MRV PROVIDER

Regen Academy

OVERVIEW

Regen Foods is a market-facing regenerative label that requires organic certification, or conversion to organic, as a baseline. Additional verification focuses on the implementation of regenerative practices such as reduced tillage, cover cropping, crop rotations, organic fertilisation, biodiversity protection, and efficient irrigation. Audits are conducted by an accredited certification body and include document review, on-farm inspections, and periodic remote follow-ups. The system emphasises practice verification and continuous improvement.

INFORMATION ASSESSED

Regen Foods - Input for EARA

Regen Foods public pages describing requirements & verification approach.

Regen Foods "Sobre Certifood" page describing the certification body's accreditation (ISO/IEC 17065; ENAC).

LIST OF ALL MEASURED RESULTS/OUTCOMES

Ecological (verified practices; outcomes mentioned but not specified as quantified indicators):

- Organic certification status (entry requirement)
- Minimum tillage / reduced soil disturbance (practice)
- Cover crops / soil cover (practice)
- Crop rotation / diversification (practice)
- Organic fertilisation (practice)
- Efficient irrigation / water management (practice)
- Biodiversity protection / functional biodiversity (practice/proxy)
- Planned grazing (where applicable)
- Agroforestry / forest restoration (mentioned in positioning)

Social (claims/intent; not defined as quantified indicators):

- Dignified working conditions, knowledge access, generational continuity, community-based agriculture (described conceptually).

Economic (claims/intent; not defined as quantified indicators):

- Reduced reliance on external inputs, stable yields, long-term farm viability (described conceptually).

SCOPE

Field Scope

- Verification focuses on field practices (cover crops, rotations, tillage, biodiversity actions, irrigation, treatments) through audits and document review.

Farm Scope

- Certification applies at farm/holding level (audit "en la finca" / on-farm visits), based on practice compliance plus organic baseline.

Spatial Scope

- Positioned as a global certification ("international standard"), without public evidence of regionally calibrated thresholds (no region-specific scoring/benchmarks published).

PROGRAM
Regen Foods

MRV PROVIDER
Regen Academy

EARA REGENERATIVE INTEGRITY CRITERIA

CONTEXT-SPECIFICITY	<p>Regen Foods is described as a single international standard developed with farmers from different countries and designed to be applicable across climates and systems. Public pages describe core requirements (organic baseline + regenerative practices) but do not provide evidence of region-specific thresholds, climate/soil calibration, or differentiated scoring logic for different production contexts.</p>	
SYSTEMIC INTEGRATION (ECOLOGICAL, SOCIAL, ECONOMIC)	<p>Regen Foods presents regeneration as multi-dimensional (ecological practices; social aims such as dignified work; economic aims such as viability and reduced inputs). However, the publicly described verification system centres on organic certification plus observation/document checks for practice compliance (tillage, covers, rotations, treatments, irrigation, biodiversity actions). The materials also mention an intention to conduct "periodic measurements" for environmental benefits (soil, biodiversity, water, carbon), but no mandatory quantified indicator set, measurement frequency, thresholds, or integration method is publicly specified.</p>	
COST-EFFECTIVENESS & PURPOSE-FIT	<p>Regen Foods describes a verification model based primarily on field-level observation and essential farm documents (logbooks, practice records, rotations, treatment lists, photographic evidence). Public materials describe on-farm inspections (every three years) plus intermediate follow-ups that can be conducted remotely, which reduces repeated travel/audit overhead while maintaining periodic in-person checks. The approach avoids mandatory lab testing or modelling as core requirements, which can support accessibility for smaller producers.</p>	
AGRONOMIC ENABLING VALUE	<p>Regen Foods states it supports continuous improvement and provides technical insights on soil fertility, rotations, cover crops, input reduction, water management and biodiversity. However, the publicly described system is primarily an audit-based certification: practice verification through observation and records.</p>	

Conclusion and Outlook

Conclusion and Outlook

This inaugural RegenCompass marks a pivotal step in mapping the dynamic landscape of regenerative agriculture MRVs. By evaluating 29 systems against farmer-led criteria, we have charted both the pioneering spirit of the field and the critical frontiers for its evolution. The analysis reveals a shared struggle to holistically integrate ecological, social, and economic pillars with true context-specificity, cost-effectiveness, and agronomic value for farmers.

These findings underscore a core imperative: the future integrity and scalability of regenerative agriculture depend on moving from a fragmented array of tools toward farmer-led harmonization. To prevent Greenwashing, Greenhushing, and co-option, and to truly empower farmers and eaters, we must establish a common foundation for validation that upholds the movement's holistic principles without stifling its adaptive, place-based creativity.

A reflection on the state of RegenAg MRVs

Given their foundation in agronomic innovation, focus on outcomes, and continuous improvement mindset, these 29 MRV systems represent a leading standard for sustainable agriculture. However, we found that the very areas where they provide the most innovative value, compared to outdated checklist MRVs, also reveal the greatest potential for further improvement:

Integrated Rigor: Fully integrating all three pillars of regeneration—ecological, social, and economic—with equal rigor.

Practical Farmer Value: Achieving true context-specificity, cost-effectiveness, and tangible agronomic value for farmers.

Key Indicator Gaps: There is a need to adopt straightforward and affordable monitoring methods for critical environmental and public health issues. Key opportunities include

- **Tracking Antimicrobial Resistance (AMR):** Implementing simple surveillance for antimicrobial resistance directly within farm environments.
- **Utilizing Insect Communities as Bioindicators:** Sampling insect populations to serve as early-warning indicators for the overuse of insecticides and parasiticides like ivermectin.

Differentiating performance levels

Apart, many RegenAg MRVs work with different levels of performance. That design allows to appreciate and engage with farmers at the beginning of their regeneration journeys just as much as with those leading regenerating innovations in the field for years.

Such differentiation and inclusivity for forward-reaching trust to all farmers is highly appreciated by EARA, it is part and parcel of regenerating forms of agriculture.

However this design feature of RegenAg MRVs can also be exploited for greenwashing. greenwashing can occur if regenerative claims are verified on an entry level, without there being an obligation for continuously more holistic improvement of the whole farm. Further impacts on greenwashing depend on the regenerative depth of the entry level.

A good design of levels has a wide breadth of measurements in the entry level, levels are determined by the measured farmer performance and there is an inherent obligation to advance in levels

A problematic design of levels measures very few indicators in the entry level, levels are pre-determined by the amount of measurements taken, not the unbiased farmer performance and there is no obligatory need to advance in levels over time.

Taking the journey into focus

Arguably, the most vital distinction between a regenerative MRV and a conventional sustainability certification lies in its philosophy of continuous improvement. Where conventional models are often binary (certified/not) and static (you meet a standard or don't), a truly regenerative MRV asks a more dynamic question: "Are you moving towards more holistic regeneration?" It prioritizes continuous improvement over a fixed notion of perfection and provides an entry point for operations at any stage.

In this initial benchmark, we assessed the enabling capacity for this journey—such as flexibility and farmer support—rather than having a predefined understanding on how the journey itself ought to be designed. The journey was captured implicitly, notably in Criterion 4 (Agronomic & Enabling Value), where we penalized systems that were static, prescriptive, and non-supportive, as these inherently block continuous progress.

Looking ahead, this distinction will move from an implicit theme to an explicit, core criterion in the next version. The next iteration of the Compass will actively evaluate how MRVs:

- **Define the Pathway:** Through progressive levels (e.g., Entry, Advanced, Leadership) and/or requirements for improved outcomes over time.
- **Measure Progress:** By tracking year-over-year advancement in key indicators, not just a one-time snapshot or practice-application.
- **Reward the Process:** Incentivizing the journey itself, ensuring the framework is a partner in long-term evolution, not just a gatekeeper for making claims.

By sharpening our focus on the process of regeneration, the evolving RegenCompass will more clearly separate frameworks that merely adopt the label from those that embody the living, continuous practice of regeneration.

A Vision for Unified Action

Our shared goal is an effective, inclusive transition. This requires a validation framework designed to empower, not constrain, one that recognises diverse pathways to positive outcomes. Certification and validation must weigh impact over prescribed inputs, restoring functional creativity and entrepreneurial agency at the farm level. They should be tools that strengthen farmers' market position, ensure fair recognition of ecosystem contributions, protect data sovereignty, and motivate, not alienate, conventional actors. To this end, we advocate for a protocol. This protocol would not be a restrictive, lowest-common-denominator checklist but a robust, scientifically-sound foundation that:

- Ensures legitimacy and uproots Greenwashing through result-based, non-prescriptive criteria.
- Creates unity without universality, allowing for local diversity and innovation while providing a core level of recognition for regenerative principles.
- Serves as a co-owned, non-proprietary data backbone for affordably verified regeneration.

Evolving the Compass: Outlook for the Living Benchmarking Assessment

As a living document, this assessment will evolve.

The ecosystem's and regenerative community's feedback, future iterations, hopefully enabled by greater resources, will aim to provide more granular,

actionable data—such as the real time and monetary cost per hectare for farmers, and a refined analysis of the agronomic enabling value of each MRV. We also plan to enhance the methodology's consistency and clarity by:

- Assess the journey as a core distinction
- Introducing a standardised checklist per criterion to ensure uniform evaluation across all organisations.
- Clustering MRVs by their primary purpose (e.g., carbon credits, food labels, advisory systems) and stage of development to enable fairer, more meaningful comparison.
- Defining clearer scoring thresholds and baselines to strengthen the interpretive power of the benchmarking matrix.
- Putting more resources for getting more farmer voices who participate in the MRVs into the assessment.
- Accounting for the quality in the design of different performance levels.

The Path Forward

The adoption of a unified holistic-minimum protocol is the logical next step for a maturing movement, providing the political leverage to influence policy and equitable value chains. This RegenCompass and its future, refined versions, serves as a foundational compass for that journey. By aligning around a common direction, we can transform the current cacophony of standards into a symphony of scalable, authentic regeneration. The journey continues, and it must be led by those at its heart: the regenerating farmers.

We repeat the invitation from our introductory disclaimer because it is of the utmost importance: We publish this report not because our analysis is finished, but precisely because it is not. We publish to learn from your critique, to engage the entire movement, and to evolve this work collectively.

Our aim is not to rebut feedback but to welcome it as the essential material for our next iteration. This requires a practice of gratitude and interdependence—recognizing that a robust, holistic framework can only be built with collective intelligence. We are confident that with your engagement, both our learning and the regeneration we seek will deepen. Let's use this compass to chart the next phase of the journey, together.

Glossary

AGW	A Greener World
API	Application Programming Interface
CAR	Climate Action Reserve
CO2e	Carbon dioxide equivalent
EARA	European Alliance for Regenerative Agriculture
ECA	European Court of Auditors
EESC	European Economic and Social Committee
EOV	Ecological Outcome Verification
GHG	Greenhouse gas
JBS	JBS Global (Multinational meat processing corporation)
KPI(s)	Key Performance Indicator(s)
MMRV	Measuring, Monitoring, Reporting, and Verification
MRV(s)	Monitoring, Reporting, and Verification (systems)
ROC	Regenerative Organic Certified
RothC	Rothamsted Carbon Model
SAI	Sustainable Agriculture Initiative (SAI Platform)
VCS	Verified Carbon Standard (Verra)
VM0042	Verra Methodology VM0042 (Improved Agricultural Land Management)
WBCSD	World Business Council for Sustainable Development

European Alliance for Regenerative Agriculture
RegenCompass V 1

